OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25912–25925

Helical optical projection tomography

Alicia Arranz, Di Dong, Shouping Zhu, Markus Rudin, Christos Tsatsanis, Jie Tian, and Jorge Ripoll  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25912-25925 (2013)
http://dx.doi.org/10.1364/OE.21.025912


View Full Text Article

Enhanced HTML    Acrobat PDF (3590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new technique termed Helical Optical Projection Tomography (hOPT) has been developed with the aim to overcome some of the limitations of current 3D optical imaging techniques. hOPT is based on Optical Projection Tomography (OPT) with the major difference that there is a translation of the sample in the vertical direction during the image acquisition process, requiring a new approach to image reconstruction. Contrary to OPT, hOPT makes possible to obtain 3D-optical images of intact long samples without imposing limits on the sample length. This has been tested using hOPT to image long murine tissue samples such as spinal cords and large intestines. Moreover, 3D-reconstructed images of the colon of DSS-treated mice, a model for Inflammatory Bowel Disease, allowed the identification of the structural alterations. Finally, the geometry of the hOPT device facilitates the addition of a Selective Plane Illumination Microscopy (SPIM) arm, providing the possibility of delivering high resolution images of selected areas together with complete volumetric information.

© 2013 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 10, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 9, 2013
Published: October 23, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Alicia Arranz, Di Dong, Shouping Zhu, Markus Rudin, Christos Tsatsanis, Jie Tian, and Jorge Ripoll, "Helical optical projection tomography," Opt. Express 21, 25912-25925 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods7(8), 603–614 (2010). [CrossRef] [PubMed]
  2. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002). [CrossRef] [PubMed]
  3. J.-F. Colas and J. Sharpe, “Live optical projection tomography,” Organogenesis5(4), 211–216 (2009). [CrossRef] [PubMed]
  4. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  5. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7(8), 637–642 (2010). [CrossRef] [PubMed]
  6. S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, “Software for bead-based registration of selective plane illumination microscopy data,” Nat. Methods7(6), 418–419 (2010). [CrossRef] [PubMed]
  7. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods4(4), 311–313 (2007). [PubMed]
  8. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, and S. E. Fraser, “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods8(9), 757–760 (2011). [CrossRef] [PubMed]
  9. M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain functional imaging at cellular resolution using light-sheet microscopy,” Nat. Methods10(5), 413–420 (2013). [CrossRef] [PubMed]
  10. L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell151(6), 1370–1385 (2012). [CrossRef] [PubMed]
  11. H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods4(4), 331–336 (2007). [CrossRef] [PubMed]
  12. A. Ertürk, C. P. Mauch, F. Hellal, F. Förstner, T. Keck, K. Becker, N. Jährling, H. Steffens, M. Richter, M. Hübener, E. Kramer, F. Kirchhoff, H. U. Dodt, and F. Bradke, “Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury,” Nat. Med.18(1), 166–171 (2011). [CrossRef] [PubMed]
  13. H. Siedentopf and R. Zsigmondy, “Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser,” Ann. Phys.315(1), 1–39 (1902). [CrossRef]
  14. M. Rudin, Molecular Imaging: Basic Principles and Applications in Biomedical Research, 1st Edition (Imperial College Press, 2005), p. 540.
  15. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, 1995).
  16. M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS ONE6(4), e18963 (2011). [CrossRef] [PubMed]
  17. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2007). [CrossRef] [PubMed]
  18. L. McGurk, H. Morrison, L. P. Keegan, J. Sharpe, and M. A. O’Connell, “Three-dimensional imaging of Drosophila melanogaster,” PLoS ONE2(9), e834 (2007). [CrossRef] [PubMed]
  19. U. J. Birk, A. Darrell, N. Konstantinides, A. Sarasa-Renedo, and J. Ripoll, “Improved reconstructions and generalized filtered back projection for optical projection tomography,” Appl. Opt.50(4), 392–398 (2011). [CrossRef] [PubMed]
  20. A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt.16(10), 100502 (2011). [CrossRef] [PubMed]
  21. R. J. Bryson-Richardson and P. D. Currie, “Optical projection tomography for spatio-temporal analysis in the zebrafish,” Methods Cell Biol.76, 37–50 (2004). [CrossRef] [PubMed]
  22. L. Fieramonti, A. Bassi, E. A. Foglia, A. Pistocchi, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, G. Cerullo, and F. Cotelli, “Time-gated optical projection tomography allows visualization of adult zebrafish internal structures,” PLoS ONE7(11), e50744 (2012). [CrossRef] [PubMed]
  23. J. Swoger, M. Muzzopappa, H. López-Schier, and J. Sharpe, “4D retrospective lineage tracing using SPIM for zebrafish organogenesis studies,” J. Biophotonics13, 1–13 (2010). [PubMed]
  24. T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods4(1), 31–33 (2007). [CrossRef] [PubMed]
  25. V. Kumar, E. Scandella, R. Danuser, L. Onder, M. Nitschké, Y. Fukui, C. Halin, B. Ludewig, and J. V. Stein, “Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell-lymphotoxin-dependent pathway,” Blood115(23), 4725–4733 (2010). [CrossRef] [PubMed]
  26. C. Vinegoni, D. Razansky, J.-L. Figueiredo, L. Fexon, M. Pivovarov, M. Nahrendorf, V. Ntziachristos, and R. Weissleder, “Born normalization for fluorescence optical projection tomography for whole heart imaging,” J. Vis. Exp.28(28), 1389 (2009). [PubMed]
  27. K. Lee, J. Avondo, H. Morrison, L. Blot, M. Stark, J. Sharpe, A. Bangham, and E. Coen, “Visualizing Plant Development and Gene Expression in Three Dimensions Using Optical Projection Tomography,” Plant Cell18(9), 2145–2156 (2006). [CrossRef] [PubMed]
  28. A. D. Leeper, J. Farrell, J. M. Dixon, S. E. Wedden, D. J. Harrison, and E. Katz, “Long-term culture of human breast cancer specimens and their analysis using optical projection tomography,” J. Vis. Exp.53(53), 3085 (2011). [PubMed]
  29. A. Kokolakis, G. Zacharakis, K. Krasagakis, K. Lasithiotakis, R. Favicchio, G. Spiliopoulos, E. Giannikaki, J. Ripoll, and A. Tosca, “Prehistological evaluation of benign and malignant pigmented skin lesions with optical computed tomography,” J. Biomed. Opt.17(6), 066004 (2012). [CrossRef] [PubMed]
  30. A. Paradisi, C. Maisse, M.-M. Coissieux, N. Gadot, F. Lépinasse, C. Delloye-Bourgeois, J.-G. Delcros, M. Svrcek, C. Neufert, J.-F. Fléjou, J.-Y. Scoazec, and P. Mehlen, “Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression,” Proc. Natl. Acad. Sci. U.S.A.106(40), 17146–17151 (2009). [CrossRef] [PubMed]
  31. A. Arranz, C. Doxaki, E. Vergadi, Y. Martinez de la Torre, K. Vaporidi, E. D. Lagoudaki, E. Ieronymaki, A. Androulidaki, M. Venihaki, A. N. Margioris, E. N. Stathopoulos, P. N. Tsichlis, and C. Tsatsanis, “Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization,” Proc. Natl. Acad. Sci. U.S.A.109(24), 9517–9522 (2012). [CrossRef] [PubMed]
  32. A. Arranz, C. Reinsch, K. A. Papadakis, A. Dieckmann, U. Rauchhaus, A. Androulidaki, V. Zacharioudaki, A. N. Margioris, C. Tsatsanis, and S. Panzner, “Treatment of experimental murine colitis with CD40 antisense oligonucleotides delivered in amphoteric liposomes,” J. Control. Release165(3), 163–172 (2013). [CrossRef] [PubMed]
  33. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  34. S. Wirtz, C. Neufert, B. Weigmann, and M. F. Neurath, “Chemically induced mouse models of intestinal inflammation,” Nat. Protoc.2(3), 541–546 (2007). [CrossRef] [PubMed]
  35. U. J. Birk, A. Darrell, N. Konstantinides, A. Sarasa-Renedo, and J. Ripoll, “Improved reconstructions and generalized filtered back projection for optical projection tomography,” Appl. Opt.50(4), 392–398 (2011). [CrossRef] [PubMed]
  36. D. Dong, S. Zhu, C. Qin, V. Kumar, J. V Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated Recovery of the Center of Rotation in Optical Projection Tomography in the Presence of Scattering,” IEEE Trans. Inf. Technol. Biomed.17, 198–204 (2012). [PubMed]
  37. S. Zhu, D. Dong, U. J. Birk, M. Rieckher, N. Tavernarakis, X. Qu, J. Liang, J. Tian, and J. Ripoll, “Automated motion correction for in vivo optical projection tomography,” IEEE Trans. Med. Imaging31(7), 1358–1371 (2012). [CrossRef] [PubMed]
  38. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol.52(10), 2775–2790 (2007). [CrossRef] [PubMed]
  39. L. Chen, J. McGinty, H. B. Taylor, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction,” Opt. Express20(7), 7323–7337 (2012). [CrossRef] [PubMed]
  40. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol.50(19), 4645–4665 (2005). [CrossRef] [PubMed]
  41. Y.-Y. Fu, C.-W. Lin, G. Enikolopov, E. Sibley, A.-S. Chiang, and S.-C. Tang, “Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution,” Gastroenterology137(2), 453–465 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (7071 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited