OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25985–25998

Carrier saturation in multiple quantum well metallo-dielectric semiconductor nanolaser: Is bulk material a better choice for gain media?

Felipe Vallini, Qing Gu, Michael Kats, Yeshaiahu Fainman, and Newton C. Frateschi  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 25985-25998 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although multi quantum well (MQW) structure is frequently suggested as the appropriate medium for providing optical gain in nanolasers with low threshold current, we demonstrate that in general bulk gain medium can be a better choice. We show that the high threshold gain required for nanolasers demands high threshold carrier concentrations and therefore a highly degenerate condition in which the barriers between the quantum wells are heavily pumped. As a result, there occurs spontaneous emission from the barrier in very dissipative low Q modes or undesired confined higher Q modes with resonance wavelengths close to the barrier bandgap. This results in a competition between wells and barriers that suppresses lasing. A complete model involving the optical properties of the resonant cavity combined with the carrier injection in the multilayer structure is presented to support our argument. With this theoretical model we show that while lasing is achieved in the nanolaser with bulk gain media, the nanolaser with MQW gain structure exhibits well emission saturation due to the onset of barrier emission.

© 2013 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 29, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: October 12, 2013
Published: October 23, 2013

Felipe Vallini, Qing Gu, Michael Kats, Yeshaiahu Fainman, and Newton C. Frateschi, "Carrier saturation in multiple quantum well metallo-dielectric semiconductor nanolaser: Is bulk material a better choice for gain media?," Opt. Express 21, 25985-25998 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  2. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  3. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012). [CrossRef] [PubMed]
  4. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express19(18), 17683–17690 (2011). [CrossRef] [PubMed]
  5. G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010). [CrossRef]
  6. S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science314(5797), 260–261 (2006). [CrossRef] [PubMed]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  8. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011). [CrossRef]
  9. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  10. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett.88(16), 163115 (2006). [CrossRef]
  11. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B247, 774–788 (2010).
  12. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  13. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  14. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  15. S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  16. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  17. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008). [CrossRef] [PubMed]
  18. Q. Ding, A. Mizrahi, Y. Fainman, and V. Lomakin, “Dielectric shielded nanoscale patch laser resonators,” Opt. Lett.36(10), 1812–1814 (2011). [CrossRef] [PubMed]
  19. A. Matsudaira, C. Y. Lu, M. Zhang, S. L. Chuang, E. Stock, and D. Bimberg, “Cavity-volume scaling law of quantum-dot metal-cavity surface-emitting microlasers,” IEEE Photon. J.4(4), 1103–1114 (2012). [CrossRef]
  20. K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express21(4), 4728–4733 (2013). [CrossRef] [PubMed]
  21. D. Bajoni, “Polariton lasers. Hybrid light-matter lasers without inversion,” J. Phys. D45(31), 313001 (2012). [CrossRef]
  22. P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid state electrically injected exciton-polariton laser,” Phys. Rev. Lett.110(20), 206403 (2013). [CrossRef]
  23. W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett.3(9), 784–786 (1991). [CrossRef]
  24. T. Kouno, K. Kishino, T. Suzuki, and M. Sakai, “Lasing actions in GaN tiny hexagonal nanoring resonators,” IEEE Photon. J.2(6), 1027–1033 (2010). [CrossRef]
  25. F. Vallini, Q. Gu, B. Wingad, B. Slutsky, M. Katz, Y. Fainman, and N. C. Frateschi, “Geometry optimization of nanopatch semiconductor lasers: the trade-off between quality factor and gain,” in Latin America Optics and Photonics Conference, Technical Digest (online) (Optical Society of America, 2012), paper LT3B.2. [CrossRef]
  26. M. Rosenzweig, M. Möhrle, H. Düser, and H. Venghaus, “Threshold current analysis of InGaAs-InGaAsP multiquantum well separate-confinement lasers,” IEEE J. Quantum Electron.27(6), 1804–1811 (1991). [CrossRef]
  27. S. L. Chuang, Physics of Optoelectronic Devices (New York, Wiley, 1995), Chap. 9.
  28. A. R. Reisinger, P. S. Zory, and R. G. Waters, “Cavity length dependence of the threshold behavior in thin quantum well semiconductor lasers,” IEEE J. Quantum Electron.23(6), 993–999 (1987). [CrossRef]
  29. C. M. Wu and E. S. Yang, “Physical mechanisms of carrier leakage in DH injection lasers,” J. Appl. Phys.49(31), 14–31 17 (1978).
  30. H. C. Casey., “Room-temperature threshold current dependence of GaAs-AlxGa1-xAs double heterostructure lasers on x and active layer thickness,” J. Appl. Phys.49(7), 3684–3692 (1978). [CrossRef]
  31. N. K. Dutta, “Calculated temperature dependence of threshold current of GaAs- AlxGa1-xAs double heterostructure lasers,” J. Appl. Phys.52(1), 70–73 (1981). [CrossRef]
  32. K. Y. Lau, “Dynamics of quantum well lasers,” in Quantum Well Lasers, P. S. Zory ed., Quantum Well Lasers, (Academic, San Diego, Cal., 1993).
  33. R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron.28(10), 1990–2008 (1992). [CrossRef]
  34. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits. (New York, Wiley, 2012), Chap. 5.
  35. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron.5(3), 673–681 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited