OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26034–26043

Broadband photoresponse and rectification of novel graphene oxide/n-Si heterojunctions

Rishi Maiti, Santanu Manna, Anupam Midya, and Samit K Ray  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26034-26043 (2013)
http://dx.doi.org/10.1364/OE.21.026034


View Full Text Article

Enhanced HTML    Acrobat PDF (1271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a novel graphene oxide (GO) based p-n heterojunction on n-Si. The fabricated vertical GO/n-Si heterojunction diode shows a very low leakage current density of 0.25 µA/cm2 and excellent rectification characteristics upto 1 MHz. The device on illumination shows a broadband (300–1100 nm) spectral response with a characteristic peak at ~700 nm, in agreement with the photoluminescence emission from GO. Very high photo-to-dark current ratio (>105) is observed upon illumination of UV light. The transient photocurrent measurements indicate that the GO based heterojunction diodes can be useful for UV and broadband photodetectors, compatible with silicon device technology.

© 2013 Optical Society of America

OCIS Codes
(230.0040) Optical devices : Detectors
(230.0230) Optical devices : Optical devices
(230.0250) Optical devices : Optoelectronics

ToC Category:
Optical Devices

History
Original Manuscript: July 24, 2013
Revised Manuscript: September 3, 2013
Manuscript Accepted: September 21, 2013
Published: October 23, 2013

Citation
Rishi Maiti, Santanu Manna, Anupam Midya, and Samit K Ray, "Broadband photoresponse and rectification of novel graphene oxide/n-Si heterojunctions," Opt. Express 21, 26034-26043 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science321(5887), 385–388 (2008). [CrossRef] [PubMed]
  2. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008). [CrossRef] [PubMed]
  3. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett.100(1), 016602 (2008). [CrossRef] [PubMed]
  4. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater.6(3), 198–201 (2007). [CrossRef] [PubMed]
  5. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  6. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100(11), 117401 (2008). [CrossRef] [PubMed]
  7. M. Freitag, “Graphene: nanoelectronics goes flat out,” Nat. Nanotechnol.3(8), 455–457 (2008). [CrossRef] [PubMed]
  8. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the graphene work function by electric field effect,” Nano Lett.9(10), 3430–3434 (2009). [CrossRef] [PubMed]
  9. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010). [CrossRef] [PubMed]
  10. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, “Insulator to semimetal transition in graphene oxide,” J. Phys. Chem. C113(35), 15768–15771 (2009). [CrossRef]
  11. G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol.3(5), 270–274 (2008). [CrossRef] [PubMed]
  12. S. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon50(9), 3210–3228 (2012). [CrossRef]
  13. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano2(3), 463–470 (2008). [CrossRef] [PubMed]
  14. G. Eda and M. Chhowalla, “Graphene-based composite thin films for electronics,” Nano Lett.9(2), 814–818 (2009). [CrossRef] [PubMed]
  15. Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, and Y. Chen, “Organic photovoltaic cells based on an acceptor of soluble graphene,” Appl. Phys. Lett.92(22), 223303 (2008). [CrossRef]
  16. J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, “Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si,” Appl. Phys. Lett.100(15), 153509 (2012). [CrossRef]
  17. X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, and Y.-X. Li, “Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect,” Adv. Mater.22(15), 1731–1735 (2010). [CrossRef] [PubMed]
  18. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45(7), 1558–1565 (2007). [CrossRef]
  19. M. Jin, H.-K. Jeong, W. J. Yu, D. J. Bae, B. R. Kang, and Y. H. Lee, “Graphene oxide thin film field effect transistors without reduction,” J. Phys. D Appl. Phys.42(13), 135109 (2009). [CrossRef]
  20. C.-H. Lin, W.-T. Yeh, C.-H. Chan, and C.-C. Lin, “Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes,” Nanoscale Res. Lett.7(1), 343 (2012). [CrossRef] [PubMed]
  21. S. Ghosh, B. K. Sarker, A. Chunder, L. Zhai, and S. I. Khondaker, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.96(16), 163109 (2010). [CrossRef]
  22. J. William, S. Hummers, and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958). [CrossRef]
  23. J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide,” Langmuir25(10), 5957–5968 (2009). [CrossRef] [PubMed]
  24. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol.3(4), 210–215 (2008). [CrossRef] [PubMed]
  25. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009). [CrossRef]
  26. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. Tascón, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24(19), 10560–10564 (2008). [CrossRef] [PubMed]
  27. Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett.94(11), 111909 (2009). [CrossRef]
  28. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010). [CrossRef] [PubMed]
  29. J. A. Yan, L. Xian, and M. Y. Chou, “Structural and electronic properties of oxidized graphene,” Phys. Rev. Lett.103(8), 086802 (2009). [CrossRef] [PubMed]
  30. C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I.-S. Chen, L. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed.51(27), 6662–6666 (2012). [CrossRef]
  31. J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, “The origin of fluorescence from graphene oxide,” Sci. Rep.2(792), 1–8 (2012).
  32. R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park, and Y. H. Lee, “Density functional theory study of graphite oxide for different oxidation levels,” Phys. Rev. B79(12), 125435 (2009). [CrossRef]
  33. S. Kazim, V. Alia, M. Zulfequar, M. Mazharul Haq, and M. Husain, “Electrical transport properties of poly [2-methoxy-5 (2'-ethyl hexyloxy)-1, 4- phenylene vinylene] thin films doped with Acridine orange dye,” Physica B393(1–2), 310–315 (2007).
  34. B. Chitara, S. B. Krupanidhi, and C. N. R. Rao, “Solution processed reduced graphene oxide ultraviolet detector,” Appl. Phys. Lett.99(11), 113114 (2011). [CrossRef]
  35. N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces2(7), 1973–1979 (2010). [CrossRef]
  36. W.-C. Wang, “ Optical Detectors,” http://depts.washington.edu/mictech/optics/sensors/detector.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited