OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26113–26122

Investigation of quantum dot passively mode-locked lasers with excited-state transition

Hsu-Chieh Cheng and Chien-Ping Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26113-26122 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Monolithic passively mode-locked quantum dot lasers with excited-state transition were investigated in a broad operating range without ground-state lasing. Optical and electrical characteristics of these mode locked lasers were studied in detail at different levels of injection current and absorber bias. Very different behaviors in the evolution of the hysteresis, the optical spectra and the evolution of repetition frequency were observed between our lasers and conventional quantum dot lasers with ground-state transition. Possible mechanisms behind these observed phenomena were proposed and discussed. A minimum pulse width of 3.3 ps and an externally compressed pulse width of 0.78 ps were obtained.

© 2013 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 5, 2013
Revised Manuscript: October 3, 2013
Manuscript Accepted: October 8, 2013
Published: October 24, 2013

Hsu-Chieh Cheng and Chien-Ping Lee, "Investigation of quantum dot passively mode-locked lasers with excited-state transition," Opt. Express 21, 26113-26122 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron.9(5), 1308–1314 (2003). [CrossRef]
  2. A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys.100(11), 113104 (2006). [CrossRef]
  3. H. Y. Wang, H. C. Cheng, S. D. Lin, and C. P. Lee, “Wavelength switching transition in quantum dot lasers,” Appl. Phys. Lett.90(8), 081112 (2007). [CrossRef]
  4. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photon. Technol. Lett.17(10), 2014–2016 (2005). [CrossRef]
  5. D. B. Malins, A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, “Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” Appl. Phys. Lett.89(17), 171111 (2006). [CrossRef]
  6. T. Piwonski, J. Pulka, G. Madden, G. Huyet, J. Houlihan, E. A. Viktorov, T. Erneux, and P. Mandel, “Intradot dynamics of InAs quantum dot based electroabsorbers,” Appl. Phys. Lett.94(12), 123504 (2009). [CrossRef]
  7. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007). [CrossRef]
  8. L. W. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D Appl. Phys.40(18), R307–R318 (2007). [CrossRef]
  9. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009). [CrossRef]
  10. M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-Locked quantum-dot laser diodes,” IEEE J. Sel. of Quantum Electron.17(5), 1302–1310 (2011). [CrossRef]
  11. S. Schneider, U. K. Woggon, P. Borri, W. Langbein, D. Ouyang, R. Sellin, and D. Bimberg, “Ultrafast gain recovery dynamics of the excited state in InGaAs quantum dot amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest Series (CD) (Optical Society of America, 2005), paper CThH6.
  12. H. C. Schneider, W. W. Chow, and S. W. Koch, “Anomalous carrier-induced dispersion in quantum-dot,” Phys. Rev. B66(4), 041310 (2002). [CrossRef]
  13. A. I. O‘Driscoll, T. Piwonski, J. Houlihan, G. Huyet, R. J. Manning, and B. Corbett, “Phase dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett.91(26), 263506 (2007). [CrossRef]
  14. P. F. Xu, H. M. Ji, J. L. Xiao, Y. X. Gu, Y. Z. Huang, and T. Yang, “Reduced linewidth enhancement factor due to excited state transition of quantum dot lasers,” Opt. Lett.37(8), 1298–1300 (2012). [CrossRef] [PubMed]
  15. M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE95(9), 1767–1778 (2007). [CrossRef]
  16. M. A. Cataluna, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett.89(8), 081124 (2006). [CrossRef]
  17. M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express18(12), 12832–12838 (2010). [CrossRef] [PubMed]
  18. S. Breuer, M. Rossetti, W. Elsässer, L. Drzewietzki, P. Bardella, I. Montrosset, M. Krakowski, and M. Hopkinson, “Reverse-emission-state-transition mode locking of a two-section InAs/InGaAs quantum dot laser,” Appl. Phys. Lett.97(7), 071118 (2010). [CrossRef]
  19. T. H. Xu, M. Rossetti, P. Bardella, and I. Montrosset, “Simulation and analysis of dynamic regimes involving ground and excited state transitions in quantum dot passively mode-locked lasers,” IEEE J. Quantum Electron.48(9), 1193–1202 (2012). [CrossRef]
  20. S. Breuer, M. Rossetti, L. Drzewietzki, P. Bardella, I. Montrosset, and W. Elsäßer, “Joint experimental and theoretical investigations of two-state mode locking in a strongly chirped reverse-biased monolithic quantum dot laser,” IEEE J. Quantum Electron.47(10), 1320–1329 (2011). [CrossRef]
  21. J. Y. Kim, M. T. Choi, W. K. Lee, and P. J. Delfyett., “Wavelength tunable mode-locked quantum-dot laser,” Proc. SPIE6243, 1–8 (2006). [CrossRef]
  22. J. Y. Kim, M. T. Choi, and P. J. Delfyett, “Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser,” Appl. Phys. Lett.89(26), 261106 (2006). [CrossRef]
  23. A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, A. Y. Egorov, N. N. Ledentsov, A. F. Tsatsul’nikov, M. V. Maximov, Y. M. Shernyakov, V. I. Kopchatov, A. V. Lunev, P. S. Kop’ev, D. Bimberg, and Z. I. Alferov, “Gain characteristics of quantum dot injection lasers,” Semicond. Sci. Technol.14(1), 118–123 (1999). [CrossRef]
  24. X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3-μm InAs quantum dot laser—absorption saturation and the quantum confined stark effect,” IEEE J. Quantum Electron.37(3), 414–417 (2001). [CrossRef]
  25. X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 um two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001). [CrossRef]
  26. M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett.88(13), 133119 (2006). [CrossRef]
  27. M. A. Cataluna, E. U. Rafailov, A. D. McRobbie, W. Sibbett, D. A. Livshits, and A. R. Kovsh, “Stable Mode-Locked Operation up to 80 °C From an InGaAs Quantum-Dot Laser,” IEEE Photon. Technol. Lett.18(14), 1500–1502 (2006). [CrossRef]
  28. L. W. Jiang, X. L. Ye, X. L. Zhou, P. Jin, X. Q. Lü, and Z. G. Wang, “Optical bistability in a two-section InAs quantum-dot laser,” J. Semicond.31(11), 114012 (2010). [CrossRef]
  29. H. Kawaguchi, “Absorptive and dispersive bistability in semiconductor injection lasers,” Opt. Quantum Electron.19(S1), S1–S36 (1987). [CrossRef]
  30. M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor lasers,” J. Appl. Phys.58(4), 1689–1692 (1985). [CrossRef]
  31. S. Arahira and Y. Ogawa, “Repetition – frequency tuning of monolithic passively mode-locked semiconductor lasers with integrated extended cavities,” IEEE J. Quantum Electron.33(2), 255–264 (1997). [CrossRef]
  32. F. Kéfélian, S. O’Donoghue, M. T. Todaro, J. McInerney, and G. Huyet, “Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser,” Opt. Express17(8), 6258–6267 (2009). [CrossRef] [PubMed]
  33. G. Carpintero, M. G. Thompson, K. Yvind, R. V. Penty, and I. H. White, “Comparison of the noise performance of 10 GHz repetition rate quantum-dot and quantum well monolithic mode-locked semiconductor lasers,” IET Optoelectron.5(5), 195–201 (2011). [CrossRef]
  34. T. Piwonski, J. Pulka, E. A. Viktorov, G. Huyet, and J. Houlihan, “Refractive index dynamics of quantum dot based waveguide electroabsorbers,” Appl. Phys. Lett.97(5), 051107 (2010). [CrossRef]
  35. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys.6, 179 (2004). [CrossRef]
  36. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron.5(9), 454–458 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited