OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26227–26235

Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask

J. Lutkenhaus, D. George, M. Moazzezi, U. Philipose, and Y. Lin  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26227-26235 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we study tunable holographic lithography using an electrically addressable spatial light modulator as a programmable phase mask. We control the phases of interfering beams diffracted from the phase pattern displayed in the spatial light modulator. We present a calculation method for the assignment of phases in the laser beams and validate the phases of the interfering beams in phase-sensitive, dual-lattice, and two-dimensional patterns formed by a rotationally non-symmetrical configuration. A good agreement has been observed between fabricated holographic structures and simulated interference patterns. The presented method can potentially help design a gradient phase mask for the fabrication of graded photonic crystals or metamaterials.

© 2013 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.1960) Physical optics : Diffraction theory
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: August 5, 2013
Revised Manuscript: September 18, 2013
Manuscript Accepted: October 8, 2013
Published: October 25, 2013

J. Lutkenhaus, D. George, M. Moazzezi, U. Philipose, and Y. Lin, "Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask," Opt. Express 21, 26227-26235 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. K. P. Chen, P. R. Herman, and R. Tam, “Strong fiber Bragg grating fabrication by hybrid 157- and 248-nm laser exposure,” IEEE Photon. Technol. Lett.14(2), 170–172 (2002). [CrossRef]
  4. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science293(5532), 1123–1125 (2001). [CrossRef] [PubMed]
  5. Y. Liu, F. Qin, Z.-M. Meng, F. Zhou, Q.-H. Mao, and Z.-Y. Li, “All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs,” Opt. Express19(3), 1945–1953 (2011). [CrossRef] [PubMed]
  6. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011). [CrossRef]
  7. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89(5), 413–416 (1994). [CrossRef]
  8. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, A. Geoffrey, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000). [CrossRef] [PubMed]
  9. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  10. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000). [CrossRef] [PubMed]
  11. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater.14(7), 2831–2833 (2002). [CrossRef]
  12. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett.82(11), 1667–1669 (2003). [CrossRef]
  13. Y. Lin, P. R. Herman, and K. Darmawikarta, “Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals,” Appl. Phys. Lett.86(7), 071117 (2005). [CrossRef]
  14. K. Ohlinger, H. Zhang, Y. Lin, D. Xu, and K. P. Chen, “A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication,” Opt. Mater. Express1(5), 1034–1039 (2011). [CrossRef]
  15. D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett.94(23), 231116 (2009).
  16. T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(4), 046610 (2006). [CrossRef] [PubMed]
  17. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasicrystals by single beam computer-generated holography,” Opt. Express16(8), 5164–5170 (2008). [CrossRef] [PubMed]
  18. J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater.22(3), 356–360 (2010). [CrossRef] [PubMed]
  19. V. Arrizón, D. S. de-la-Llave, G. Méndez, and U. Ruiz, “Efficient generation of periodic and quasi-periodic non-diffractive optical fields with phase holograms,” Opt. Express19(11), 10553–10562 (2011). [CrossRef] [PubMed]
  20. J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, and P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett.100(12), 121101 (2012). [CrossRef]
  21. J. Xavier and J. Joseph, “Tunable complex photonic chiral lattices by reconfigurable optical phase engineering,” Opt. Lett.36(3), 403–405 (2011). [CrossRef] [PubMed]
  22. M. Kumar and J. Joseph, “Embedding a nondiffracting defect site in helical lattice wave-field by optical phase engineering,” Appl. Opt.52(23), 5653–5658 (2013). [CrossRef] [PubMed]
  23. M. Boguslawski, A. Kelberer, P. Rose, and C. Denz, “Multiplexing complex two-dimensional photonic superlattices,” Opt. Express20(24), 27331–27343 (2012). [CrossRef] [PubMed]
  24. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  25. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  26. B. Arigong, K. Ohlinger, H. S. Kim, Y. Lin, and H. Zhang, “Transformation optics designed general optical luneburg lens with flattened shapes,” Proc. SPIE8376, 83760R–1, 83760R-6 (2012). [CrossRef]
  27. K. Ohlinger, J. Lutkenhaus, H. Zhang, and Y. Lin, “Spatially addressable design of Luneburg lens through spatial light modulator based holographic lithography,” J. Appl. Phys.submitted.
  28. J. Lutkenhaus, D. George, D. Garrett, K. Ohlinger, H. Zhang, and Y. Lin, “Holographic formation of compound photonic crystal and nano-antenna templates through laser interference,” J. Appl. Phys.113(10), 103103 (2013). [CrossRef]
  29. R. C. Rumpf and J. Pazos, “Synthesis of spatially variant lattices,” Opt. Express20(14), 15263–15274 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited