OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26285–26302

Designing dielectric resonators on substrates: Combining magnetic and electric resonances

J. van de Groep and A. Polman  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26285-26302 (2013)
http://dx.doi.org/10.1364/OE.21.026285


View Full Text Article

Enhanced HTML    Acrobat PDF (2822 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-performance integrated optics, solar cells, and sensors require nanoscale optical components at the surface of the device, in order to manipulate, redirect and concentrate light. High-index dielectric resonators provide the possibility to do this efficiently with low absorption losses. The resonances supported by dielectric resonators are both magnetic and electric in nature. Combined scattering from these two can be used for directional scattering. Most applications require strong coupling between the particles and the substrate in order to enhance the absorption in the substrate. However, the coupling with the substrate strongly influences the resonant behavior of the particles. Here, we systematically study the influence of particle geometry and dielectric environment on the resonant behavior of dielectric resonators in the visible to near-IR spectral range. We show the key role of retardation in the excitation of the magnetic dipole (MD) mode, as well as the limit where no MD mode is supported. Furthermore, we study the influence of particle diameter, shape and substrate index on the spectral position, width and overlap of the electric dipole (ED) and MD modes. Also, we show that the ED and MD mode can selectively be enhanced or suppressed using multi-layer substrates. And, by comparing dipole excitation and plane wave excitation, we study the influence of driving field on the scattering properties. Finally, we show that the directional radiation profiles of the ED and MD modes in resonators on a substrate are similar to those of point-dipoles close to a substrate. Altogether, this work is a guideline how to tune magnetic and electric resonances for specific applications.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(290.5850) Scattering : Scattering, particles
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Scattering

History
Original Manuscript: August 27, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 16, 2013
Published: October 25, 2013

Virtual Issues
January 10, 2014 Spotlight on Optics

Citation
J. van de Groep and A. Polman, "Designing dielectric resonators on substrates: Combining magnetic and electric resonances," Opt. Express 21, 26285-26302 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010). [CrossRef] [PubMed]
  2. C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett.8, 642–646 (2008). [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  4. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. H. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010). [CrossRef] [PubMed]
  5. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20, 1253–1257 (2008). [CrossRef]
  6. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express16, 19447–19461 (2008). [CrossRef] [PubMed]
  7. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  8. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  9. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12, 60–69 (2009). [CrossRef]
  10. L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett.13, 3559–3565 (2013). [CrossRef] [PubMed]
  11. Y. H. Fu, A. I. Kuznetsov, A. E. Miroschnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013). [CrossRef] [PubMed]
  12. G. Mie, “Beitrge zur optik trber medien, speziell kolloidaler metallsungen,” Ann. Phys.330, 377–445 (1908). [CrossRef]
  13. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011). [CrossRef] [PubMed]
  14. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuck, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82, 045404 (2010). [CrossRef]
  15. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17, 24084–24095 (2009). [CrossRef]
  16. A. I. Kuznetsov, A. E. Miroschnichenko, Y. H. Fu, J. B. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012). [CrossRef] [PubMed]
  17. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B84, 235429 (2011). [CrossRef]
  18. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12, 3749–3755 (2012). [CrossRef] [PubMed]
  19. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacelle, S. Mackowski, and J. Aizpurua, “Dielectric antennas - a suitable platform for controlling magnetic dipolar emission,” Opt. Express20, 13636–13650 (2012). [CrossRef] [PubMed]
  20. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013). [PubMed]
  21. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7, 7824–7832 (2013). [CrossRef]
  22. P. Fan, K. C. Y. Huang, L. Cao, and M. L. Brongersma, “Redesigning photodetector electrodes as an optical antenna,” Nano Lett.13, 392–396 (2013). [CrossRef] [PubMed]
  23. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012). [CrossRef] [PubMed]
  24. P. Spinelli, B. Macco, M. A. Verschuuren, W. M. M. Kessels, and A. Polman, “Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination,” Appl. Phys. Lett.102, 233902 (2013). [CrossRef]
  25. FDTD Solutions, Lumerical Solutions, Inc., http://www.lumerical.com .
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  27. P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express19, A303–A311 (2011). [CrossRef] [PubMed]
  28. T. Coenen, J. van de Groep, and A. Polman, “Resonant Mie modes of single silicon nanocavities excited by electron irradiation,” ACS Nano7, 1689–1698 (2013). [CrossRef] [PubMed]
  29. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010). [CrossRef]
  30. R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, “Deep-subwavelength imaging of the modal dispersion of light,” Nat. Mater.11, 781–787 (2012). [CrossRef] [PubMed]
  31. T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012). [CrossRef] [PubMed]
  32. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011). [CrossRef]
  33. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am.67, 1607–1614 (1977). [CrossRef]
  34. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006). [CrossRef]
  35. M. Kerker, D. Wang, and G. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am.73, 765–767 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited