OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26311–26322

Realizing vertical light coupling and splitting in nano-plasmonic multilevel circuits

Mohamed H. El Sherif, Osman S. Ahmed, Mohamed H. Bakr, and Mohamed A. Swillam  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26311-26322 (2013)
http://dx.doi.org/10.1364/OE.21.026311


View Full Text Article

Enhanced HTML    Acrobat PDF (1018 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel technique for vertical coupling of light guided by nanoscale plasmonic slot waveguides (PSWs). A triangularly-shaped plasmonic slot waveguide rotator is exploited to attain such coupling with a good efficiency over a wide bandwidth. Using this approach, light propagating in a horizontal direction is efficiently coupled to propagate in the vertical direction and vice versa. We also propose a power divider configuration to evenly split a vertically coupled light wave to two horizontal channels. A detailed parametric study of the triangular rotator is demonstrated with multiple configurations analyzed. This structure is suitable for efficient coupling in multilevel nano circuit environment.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.1360) Optical devices : Beam splitters
(230.4170) Optical devices : Multilayers
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: August 19, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 16, 2013
Published: October 25, 2013

Citation
Mohamed H. El Sherif, Osman S. Ahmed, Mohamed H. Bakr, and Mohamed A. Swillam, "Realizing vertical light coupling and splitting in nano-plasmonic multilevel circuits," Opt. Express 21, 26311-26322 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26311


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006). [CrossRef]
  2. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys.75(4), 046402 (2012). [CrossRef] [PubMed]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  6. I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron.18(3), 1110–1121 (2012). [CrossRef]
  7. M. H. El Sherif, O. S. Ahmed, M. H. Bakr, and M. A. Swillam, “Polarization-controlled excitation of multilevel plasmonic nano-circuits using single silicon nanowire,” Opt. Express20(11), 12473–12486 (2012). [CrossRef] [PubMed]
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  9. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today2(1), 18–29 (2007). [CrossRef]
  10. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 311102 (2005). [CrossRef]
  11. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  12. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22(45), 5120–5124 (2010). [CrossRef] [PubMed]
  13. M. A. Swillam and A. S. Helmy, “Feedback effects in plasmonic slot waveguides examined using a closed-form model,” IEEE Photon. Technol. Lett.24(6), 497–499 (2012). [CrossRef]
  14. M. Raburn, B. Liu, K. Rauscher, Y. Okuno, N. Dagli, and J. E. Bowers, “3-D photonic circuit technology,” IEEE J. Sel. Top. Quantum Electron.8(4), 935–942 (2002). [CrossRef]
  15. S. N. Garner, S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, and L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron.35(8), 1146–1155 (1999). [CrossRef]
  16. F. D. T. D. Lumerical, Lumerical Soultions, Inc. http://www.lumerical.com
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  18. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmonic slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited