OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26341–26351

Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems

Patrick Poole, Simeon Trendafilov, Gennady Shvets, Douglas Smith, and Enam Chowdhury  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26341-26351 (2013)
http://dx.doi.org/10.1364/OE.21.026341


View Full Text Article

Enhanced HTML    Acrobat PDF (1606 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced femtosecond damage thresholds of Au and Ag coated pulse compression gratings were measured using 800 nm laser pulses ranging in duration from 30 to 200 fs. These gratings differ from conventional metal-on-photoresist pulse compression gratings in that the gratings patterns are generated by etching the fused silica substrate directly. After etching, the metal overcoating was optimized based on diffraction efficiency and damage threshold considerations. The experiment on these gratings was performed under vacuum for single-shot damage. Single-shot damage threshold, where there is a 0% probability of damage, was determined to be within a 400–800 mJ/cm2 range. The damage threshold exhibited no clear dependence on pulse width, but showed clear dependence on gold overcoat surface morphology. This was confirmed by electromagnetic field modeling using the finite element method, which showed that non-conformal coating morphology gives rise to significant local field enhancement near groove edges, lowering the diffraction efficiency and increasing Joule heating. Large-scale gratings with conformal coating have been installed successfully in the 500 TW Scarlet laser system.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(140.3330) Lasers and laser optics : Laser damage
(320.5520) Ultrafast optics : Pulse compression
(240.6648) Optics at surfaces : Surface dynamics

ToC Category:
Ultrafast Optics

History
Original Manuscript: August 30, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 16, 2013
Published: October 25, 2013

Citation
Patrick Poole, Simeon Trendafilov, Gennady Shvets, Douglas Smith, and Enam Chowdhury, "Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems," Opt. Express 21, 26341-26351 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26341


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985). [CrossRef]
  2. J. P. Chambaret, F. Mathieu, and K. Osvay, “APOLLON building stage has begun,” ELI Courier2(2), (2010).
  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B13(2), 459–468 (1996). [CrossRef]
  4. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, and L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt.34(10), 1697–1706 (1995). [CrossRef] [PubMed]
  5. J. A. Britten, M. D. Perry, B. W. Shore, and R. D. Boyd, “Universal grating design for pulse stretching and compression in the 800–1100-nm range,” Opt. Lett.21(7), 540–542 (1996). [CrossRef] [PubMed]
  6. B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996). [CrossRef]
  7. E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk, and B. Luther-Davies, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas9(3), 949–957 (2001). [CrossRef]
  8. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A107, 99–107 (1999).
  9. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun.114, 106–110 (1995). [CrossRef]
  10. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron.33, 1706–1716 (1997). [CrossRef]
  11. N. Bonod and J. Neauport, “Optical performance and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun.260(2), 649–655 (2006). [CrossRef]
  12. F. Canova, O. Uteza, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express15(23), 15324–15334 (2007). [CrossRef] [PubMed]
  13. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express15(19), 12508–12522 (2007). [CrossRef] [PubMed]
  14. J. Neauport, N. Bonod, S. Hocquet, S. Palmier, and G. Dupuy, “Mixed metal dielectric gratings for pulse compression,” Opt. Express18(23), 23776–23783 (2010). [CrossRef] [PubMed]
  15. A. Cotel, N. Forget, C. Brach, F. Bonnemason, E. Baynard, C. Le Bris, and C. Le Blanc, “Characterization of multilayer dielectric gratings for petawatt-class lasers,” QELS ’053, 2038–2040 (2005).
  16. F. Kong, Y. Jin, S. Liu, S. Chen, H. Guan, K. He, Y. Du, and H. He, “Femtosecond laser damage of broadband pulse compression gratings,” Chin. Opt. Lett.11(10), 102302 (2013).
  17. E. Gubbini, G. Kommol, M. Schnürer, H. Schönagel, U. Eichmann, M. P. Kalashnikov, P. V. Nickles, F. Eggenstein, G. Reichardt, and W. Sandner, “‘On-line’ cleaning of optical components in a multi-TW-Ti:Sa laser system,” Vacuum76, 45–49 (2004). [CrossRef]
  18. A. J. Langley, W. J. Lester, and J. M. Smith, “RF plasma cleaning of compression gratings for intense femtosecond pulses,” Central Laser Facility Annual Report 2003/2004 < http://www.clf.rl.ac.uk/resources/PDF/ar03-04.pdf >.
  19. G. Xulei, T. Hao, Z. Yi, M. Jinglong, Z. Wei, M. Jingyi, C. Liming, W. Zhaohua, L. Yutong, J. Gang, H. Duanwei, and W. Zhiyi, “Plasma cleaning of compressed grating in chirped-pulse femtosecond laser amplifier,” Chinese J. Lasers04, (2012).
  20. T. Jitsuno, H. Murakami, S. Motokoshi, E. Saato, K. Mikami, K. Kato, T. Kawasaki, Y. Nakata, N. Sarukura, T. Shinizu, H. Shiraga, N. Miyanaga, and H. Azechi, “Oil-contamination problem in large-scale pulse-compressor,” Proc. SPIE7842, 784221 (2010). [CrossRef]
  21. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, Inc.,1997).
  22. P. T. Konkola, C. G. Chen, R. K. Heilmann, C. Joo, J. C. Montoya, C-H. Chang, and M. L. Schattenburg, “Nanometer-level repeatable metrology using the Nanoruler,” J. Vac. Sci. Technol. B21(6), 3097–3101 (2003). [CrossRef]
  23. J. Bonse, S. Baudach, W. Kautek, E. Welsch, and J. Kruger, “Femtosecond laser damage of a high reflecting mirror,” Thin Solid Films408, 297–301 (2002). [CrossRef]
  24. G. Bataviciute, P. Grigas, L. Smalakys, and A. Melninkaitis, “Bayesian approach of laser-induced damage threshold analysis and determination of error bars, Proc. SPIE8530, 85301S (2012). [CrossRef]
  25. X. C. Wang, G. C. Lim, H. Y. Zheng, F. L. Ng, W. Liu, and S. J. Chua, “Femtosecond pulse laser ablation of sapphire in ambient air,” Appl. Surf. Sci.228, 221–226 (2004). [CrossRef]
  26. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150, 101–106 (1999). [CrossRef]
  27. H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation induced by single- and multiple-femtosecond laser pulses in lithium niobate,” Laser Phys.17, 1378–1381 (2007). [CrossRef]
  28. J. Kruger, D. Dufft, R. Koter, and A. Hertwig, “Femtosecond laser-induced damage of gold films,” Appl. Surf. Sci.253, 7815–7819 (2007). [CrossRef]
  29. B. Wang and L. Gallais, “A theoretical investigation of the laser damage threshold of metal multi-dielectric mirrors for high power ultrashort applications,” Opt. Express21(12), 14698–14711 (2013). [CrossRef] [PubMed]
  30. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses”, Opt. Eng.44, 051107 (2005). [CrossRef]
  31. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys.108, 043523 (2010). [CrossRef]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  33. V. D. Vinokurova, R. R. Gerke, T. G. Dubrovina, M. D. Mikhailov, E. G. Sall’, A. V. Charukhchev, and V. E. Yashin, “Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems,” Quantum Electron.35(6), 569–572 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited