OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26376–26386

On nonlinearly-induced noise in single-channel optical links with digital backpropagation

Lotfollah Beygi, Naga V. Irukulapati, Erik Agrell, Pontus Johannisson, Magnus Karlsson, Henk Wymeersch, Paolo Serena, and Alberto Bononi  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26376-26386 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (746 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we investigate the performance limits of electronic chromatic dispersion compensation (EDC) and digital backpropagation (DBP) for a single-channel non-dispersion-managed fiber-optical link. A known analytical method to derive the performance of the system with EDC is extended to derive a first-order approximation for the performance of the system with DBP. In contrast to the cubic growth of the variance of the nonlinear noise-like interference, often called nonlinear noise, with input power for EDC, a quadratic growth is observed with DBP using this approximation. Finally, we provide numerical results to verify the accuracy of the proposed approach and compare it with existing analytical models.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 5, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 20, 2013
Published: October 28, 2013

Lotfollah Beygi, Naga V. Irukulapati, Erik Agrell, Pontus Johannisson, Magnus Karlsson, Henk Wymeersch, Paolo Serena, and Alberto Bononi, "On nonlinearly-induced noise in single-channel optical links with digital backpropagation," Opt. Express 21, 26376-26386 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Costello and G. D. Forney, “Channel coding: The road to channel capacity,” Proc. IEEE, 95(6), 1150–1177 (2007). [CrossRef]
  2. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., 28(4), 662–701 (2010). [CrossRef]
  3. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightw. Technol., 28(4), 423–433 (2010). [CrossRef]
  4. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightw. Technol., 27(22), 5115–5126 (2009). [CrossRef]
  5. A. Mecozzi, “Probability density functions of the nonlinear phase noise,” Opt. Lett., 29(7), 673–675 (2004). [CrossRef] [PubMed]
  6. K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich, and S. K. Turitsyn, “Information capacity of optical fiber channels with zero average dispersion,” Phys. Rev. Lett., 91(20), 203901 (2003). [CrossRef] [PubMed]
  7. M. I. Yousefi and F. R. Kschischang, “On the per-sample capacity of nondispersive optical fibers,” IEEE Trans. Inf. Theory, 57(11), 7522–7541 (2011). [CrossRef]
  8. K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).
  9. L. Beygi, E. Agrell, M. Karlsson, and P. Johannisson, “Signal statistics in fiber-optical channels with polarization multiplexing and self-phase modulation,” J. Lightw. Technol., 29(16), 2379–2386 (2011). [CrossRef]
  10. A. P. T. Lau, T. S. R. Shen, W. Shieh, and K.-P. Ho, “Equalization-enhanced phase noise for 100Gb/s transmission and beyond with coherent detection,” Opt. Express, 18(16), 17 239–17 251 (2010). [CrossRef]
  11. K.-P. Ho, A. P. T. Lau, and W. Shieh, “Equalization-enhanced phase noise induced timing jitter,” Opt. Lett., 36(4), 585–587 (2011). [CrossRef] [PubMed]
  12. B. Goebel, R.-J. Essiambre, G. Kramer, P. J. Winzer, and N. Hanik, “Calculation of mutual information for partially coherent Gaussian channels with applications to fiber optics,” IEEE Trans. Inf. Theory, 57(9), 5720–5736 (2011). [CrossRef]
  13. A. T. Lau, S. Rabbani, and J. M. Kahn, “On the statistics of intrachannel four-wave mixing in phase-modulated optical communication systems,” J. Lightw. Technol., 26(14), 2128–2135 (2008). [CrossRef]
  14. K.-P. Ho and H.-C. Wang, “Comparison of nonlinear phase noise and intrachannel four-wave mixing for RZ-DPSK signals in dispersive transmission systems,” IEEE Photon. Technol. Lett., 17(7), 1426–1428 (2005). [CrossRef]
  15. P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightw. Technol., 30(24), 3857–3879 (2012). [CrossRef]
  16. H. Song and M. Brandt-Pearce, “A 2-D discrete-time model of physical impairments in wavelength-division multiplexing systems,” J. Lightw. Technol., 30(5), 713–726 (2012). [CrossRef]
  17. A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudolinear coherent systems,” J. Lightw. Technol., 30(12), 2011–2024 (2012). [CrossRef]
  18. A. Bononi, P. Serena, N. Rossi, E. Grellier, and F. Vacondio, “Modeling nonlinearity in coherent transmissions with dominant intrachannel-Four-Wave-Mixing,” Opt. Express, 20(7), 7777–7791 (2012). [CrossRef] [PubMed]
  19. P. Johannisson and M. Karlsson, “Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system,” J. Lightw. Technol., 31(8), 1273–1282 (2013). [CrossRef]
  20. A. Bononi and P. Serena, “An alternative derivation of Johannisson’s regular perturbation model,” 2012. [Online]. Available: http://arXiv:1207.4729
  21. L. Beygi, E. Agrell, P. Johannisson, M. Karlsson, and H. Wymeersch, “A discrete-time model for uncompensated single-channel fiber-optical links,” IEEE Trans. Commun., 60(11), 3440–3450 (2012). [CrossRef]
  22. E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” Opt. Express, 19(26), B790–B798 (2011). [CrossRef]
  23. G. Bosco, R. Cigliutti, A. Nespola, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, Y. Jiang, and P. Poggiolini, “Experimental investigation of nonlinear interference accumulation in uncompensated links,” IEEE Photon. Technol. Lett., 24(14), 1230–1232 (2012). [CrossRef]
  24. T. Tanimura, M. Nölle, J. K. Fischer, and C. Schubert, “Analytical results on back propagation nonlinear compensator with coherent detection,” Opt. Express, 20(27), pp. 28 779–28 785 (2012). [CrossRef]
  25. G. P. Agrawal, Nonlinear fiber optics, 4th ed. (Academic Press, 2007).
  26. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 2002). [CrossRef]
  27. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital Backpropagation,” J. Lightw. Technol., 26(20), 3416–3425 (2008). [CrossRef]
  28. F. Vacondio, O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J.-C. Antona, and S. Bigo, “On nonlinear distortions of highly dispersive optical coherent systems,” Opt. Express, 20(2), 1022–1032 (2012). [CrossRef] [PubMed]
  29. L. Beygi, E. Agrell, P. Johannisson, M. Karlsson, and H. Wymeersch, “The Limits of Digital Backpropagation in Nonlinear Coherent Fiber-Optical Links,” in Proceedings of European Conference and Exhibition on Optical Communication, Amsterdam, The Netherlands, September 2012, P4.14.
  30. J. G. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2008).
  31. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightw. Technol., 28(6), 939–951 (2010). [CrossRef]
  32. A. Bononi, N. Rossi, and P. Serena, “Transmission limitations due to fiber nonlinearity,” in Proc. Optic. Fiber Commun. Conf., p. OWO7, Mar.2011.
  33. E. Grellier and A. Bononi, “Quality parameter for coherent transmissions with Gaussian-distributed nonlinear noise,” Opt. Express, 19(13), 12 781–12 788 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited