OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26387–26397

Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material

Alok P. Vasudev, Ju-Hyung Kang, Junghyun Park, Xiaoge Liu, and Mark L. Brongersma  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26387-26397 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2986 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Accumulating electrons in transparent conductive oxides such as indium tin oxide (ITO) can induce an ”epsilon-near-zero” (ENZ) in the spectral region near the important telecommunications wavelength of λ = 1.55μm. Here we theoretically demonstrate highly effective optical electro-absorptive modulation in a silicon waveguide overcoated with ITO. This modulator leverages the combination of a local electric field enhancement and increased absorption in the ITO when this material is locally brought into an ENZ state via electrical gating. This leads to large changes in modal absorption upon gating. We find that a 3 dB modulation depth can be achieved in a non-resonant structure with a length under 30 μm for the fundamental waveguide modes of either linear polarization, with absorption contrast values as high as 37. We also show a potential for 100 fJ/bit modulation, with a sacrifice in performance.

© 2013 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(250.7360) Optoelectronics : Waveguide modulators
(130.4110) Integrated optics : Modulators

ToC Category:

Original Manuscript: July 11, 2013
Revised Manuscript: October 10, 2013
Manuscript Accepted: October 11, 2013
Published: October 28, 2013

Alok P. Vasudev, Ju-Hyung Kang, Junghyun Park, Xiaoge Liu, and Mark L. Brongersma, "Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material," Opt. Express 21, 26387-26397 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “Device Requirements for optical interconnects to silicon chips,” Proc. IEEE97, 1166–1185 (2009). [CrossRef]
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4, 518–526 (2010). [CrossRef]
  3. E. H. Edwards, R. M. Audet, E. T. Fei, S. A. Claussen, R. K. Schaevitz, E. Tasyurek, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe assymetric Fabry-Perot quantum well electroabsorption modulators,” Opt. Express20, 29164–29173 (2012). [CrossRef]
  4. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J.4, 735–740 (2012).
  5. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10, 2111–2116 (2010). [CrossRef]
  6. V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” J. Nanophotonics1, 17–22 (2012).
  7. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett.109, 053901 (2012). [CrossRef] [PubMed]
  8. Graham T. Reed and Andrew P. Knights, Silicon photonics. Wiley (2008). [CrossRef]
  9. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12,8, 1622 (2004). [CrossRef] [PubMed]
  10. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23, 123–129 (1987). [CrossRef]
  11. G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon optical modulators at 1.3 μ m based on free-carrier absorption,” IEEE Electron Dev. Lett., 12, 276–278 (1991). [CrossRef]
  12. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & Photon. Rev.4, 795–808 (2010). [CrossRef]
  13. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μ m,” Opt. Lett.34, 839–841 (2009). [CrossRef] [PubMed]
  14. J. Robertson, “High dielectric constant oxides,” Eur. Phys. J. Appl. Phys.28, 265–291 (2004). [CrossRef]
  15. P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Trans.19, 2995–3002 (2004). [CrossRef] [PubMed]
  16. J. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express16, 16659–16669 (2008). [CrossRef] [PubMed]
  17. D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. Luff, Y. Luo, J. Cunningham, A. Krishnamoorthy, and M. Asghari, “High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide,” Opt. Express20, 22224–22232 (2012). [CrossRef] [PubMed]
  18. D. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20, A293–A308 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited