OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26520–26526

Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes

Marenori Kawamura, Kento Nakamura, and Susumu Sato  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26520-26526 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2373 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a liquid crystal (LC) micro-lens array with the structure of two-divided and tetragonally hole-patterned electrodes. Each LC cell in the lens array behaves like cylindrical or spherical lens properties by electrically adjusting the applied voltages. The LC micro-lens array is useful for tuning optical properties such a focal length and deflection angle of a light emitting diode (LED) illumination system.

© 2013 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(160.3710) Materials : Liquid crystals
(230.0230) Optical devices : Optical devices
(230.3720) Optical devices : Liquid-crystal devices
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Optical Devices

Original Manuscript: August 20, 2013
Revised Manuscript: October 15, 2013
Manuscript Accepted: October 15, 2013
Published: October 28, 2013

Marenori Kawamura, Kento Nakamura, and Susumu Sato, "Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes," Opt. Express 21, 26520-26526 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979). [CrossRef]
  2. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett.23(13), 992–994 (1998). [CrossRef] [PubMed]
  3. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002). [CrossRef]
  4. H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett.81(19), 3537–3539 (2002). [CrossRef]
  5. H. Lin and Y.-H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98, 083503 (2010).
  6. M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun.225(4–6), 277–280 (2003). [CrossRef]
  7. M. Ye, B. Wang, and S. Sato, “Study of liquid crystal lens with focus movable in focal plane by wave front analysis,” Jpn. J. Appl. Phys.45(8A), 6320–6322 (2006). [CrossRef]
  8. M. Ye, B. Wang, M. Uchida, S. Yanase, H. Kunitsuka, S. Takahashi, and S. Sato, “Measurement of optical aberrations of liquid crystal lens,” Jpn. J. Appl. Phys.52, 042501–042504 (2013). [CrossRef]
  9. M. Kawamura, M. Ye, and S. Sato, “Optical trapping and manipulation system by using a liquid crystal lens with focusing and deflection properties,” Jpn. J. Appl. Phys.44(8), 6098–6100 (2005). [CrossRef]
  10. M. Kawamura, H. Umeda, J. Onishi, M. Ye, and S. Sato, “Laser manipulator for rotating microscopic trapped particles by using liquid crystal optical devices,” Mol. Cryst. Liq. Cryst.488(1), 238–245 (2008). [CrossRef]
  11. T. Nose and S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst.5(5), 1425–1433 (1989). [CrossRef]
  12. S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996). [CrossRef]
  13. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt.36(20), 4772–4778 (1997). [CrossRef] [PubMed]
  14. S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation states and optical properties of liquid crystal microlenses with an asymmetric electrode structure,” Jpn. J. Appl. Phys.41(Part 1, No. 3A), 1482–1488 (2002). [CrossRef]
  15. M. Ye, H. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys.43(9A), 6108–6111 (2004). [CrossRef]
  16. H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun.247(1-3), 101–106 (2005). [CrossRef]
  17. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stablized blue phase liquid crystals,” Appl. Phys. Lett.96(11), 113505 (2010). [CrossRef]
  18. M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys.40(Part 1, No. 10), 6012–6016 (2001). [CrossRef]
  19. T. Sugita, S. Oka, T. Naganuma, T. Saito, S. Komura, and T. Miyazawa, “Refractive index distribution analysis of liquid crystal GRIN lens for autostereoscopic 2D/3D switchable displays,” SID Symp. Dig. Tech. 43 1452–1455 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited