OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26557–26563

Athermal silicon microring resonators with titanium oxide cladding

Biswajeet Guha, Jaime Cardenas, and Michal Lipson  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26557-26563 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a novel approach for CMOS-compatible passively temperature insensitive silicon based optical devices using titanium oxide cladding which has a negative thermo-optic (TO) effect. We engineer the mode confinement in Si and TiO2 such that positive TO of Si is exactly cancelled out by negative TO of TiO2. We demonstrate robust operation of the resulting device over 35 degrees.

© 2013 OSA

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(130.0130) Integrated optics : Integrated optics
(130.3130) Integrated optics : Integrated optics materials

ToC Category:
Integrated Optics

Original Manuscript: September 3, 2013
Revised Manuscript: October 12, 2013
Manuscript Accepted: October 13, 2013
Published: October 28, 2013

Biswajeet Guha, Jaime Cardenas, and Michal Lipson, "Athermal silicon microring resonators with titanium oxide cladding," Opt. Express 21, 26557-26563 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967) [CrossRef]
  2. P. Alipour, E. Shah Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).
  3. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett.32, 1800–1802 (2007). [CrossRef] [PubMed]
  4. J. Teng, P. Dumon, W. Bogaerts, H. B. Zhang, X. G. Jian, X. Y. Han, M. S. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17, 14627–14633 (2009). [CrossRef] [PubMed]
  5. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010).
  6. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18, 9852–9858 (2010). [CrossRef] [PubMed]
  7. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20, 27999–28008 (2012). [CrossRef] [PubMed]
  8. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2013).
  9. W. Zortman, A. Lentine, D. Trotter, and M. Watts, “Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator,” in Optical Fiber Communication Conference (Optical Society of America, 2012). [CrossRef]
  10. C. Qiu and Q. Xu, “Wavelength tracking with thermally controlled silicon resonators,” in CLEO: Science and Innovations (Optical Society of America, 2011).
  11. E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in CLEO: Science and Innovations (Optical Society of America, 2012).
  12. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express18, 1879–1887 (2010). [CrossRef] [PubMed]
  13. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18, 3487–3493 (2010). [CrossRef] [PubMed]
  14. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett.37, 2253–2255 (2012). [CrossRef] [PubMed]
  15. S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, “Titanium dioxide (TiO2)-based gate insulators,” IBM journal of research and development43, 383–392 (1999). [CrossRef]
  16. V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A ‘soft electronic band’ and the negative thermooptic effect in strontium titanate,” New J. Phys.11, 083024 (2009). [CrossRef]
  17. B. Guha and M. Lipson, “Athermal silicon ring resonator with bi-material cantilever for passive thermal feedback,” in CLEO: Science and Innovations (Optical Society of America, 2013).
  18. S. S. Djordjevic, K. Shang, B. Guan, S. T. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express21, 13958–13968 (2013). [CrossRef] [PubMed]
  19. F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metaloxidesemiconductor compatible athermal silicon nitride/ titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett.102, 051106 (2013). [CrossRef]
  20. J. T. Choy, J. D. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Loncar, “Integrated TiO2resonators for visible photonics,” Opt. Lett.37, 539–541 (2012). [CrossRef] [PubMed]
  21. J. D. Bradley, C. C. Evans, J. T. Choy, O. Reshef, P. B. Deotare, F. Parsy, K. C. Phillips, M. Loncar, and E. Mazur, “Submicrometer-wide amorphous and polycrystalline anatase TiO2waveguides for microphotonic devices,” Opt. Express20, 23821–23831 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited