OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26605–26611

Generation of 2.6-mJ 400-kW pulses from a compact Yb:Gd3Ga5O12 laser repetitively Q-switched by an acousto-optic modulator

Junhai Liu, Xiaowen Chen, Wenjuan Han, Qibiao Dai, Kui Wu, and Huaijin Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26605-26611 (2013)
http://dx.doi.org/10.1364/OE.21.026605


View Full Text Article

Enhanced HTML    Acrobat PDF (1638 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient, acousto-optically Q-switched, and compact Yb:Gd3Ga5O12 laser oscillating around 1026 nm is demonstrated, producing an output power of 5.15 W at a pulse repetition rate of 2 kHz, with optical-to-optical and slope efficiencies being 35.8% and 52%, respectively. The generated laser pulses are 6.4 ns in duration (FWHM), with pulse energy and peak power amounting, respectively, to 2.58 mJ and 403 kW.

© 2013 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 4, 2013
Revised Manuscript: October 19, 2013
Manuscript Accepted: October 19, 2013
Published: October 28, 2013

Citation
Junhai Liu, Xiaowen Chen, Wenjuan Han, Qibiao Dai, Kui Wu, and Huaijin Zhang, "Generation of 2.6-mJ 400-kW pulses from a compact Yb:Gd3Ga5O12 laser repetitively Q-switched by an acousto-optic modulator," Opt. Express 21, 26605-26611 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Koechner, Solid-State Laser Engineering (Springer, 2006), Chaps. 2, 8.
  2. J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B85(4), 513–518 (2006). [CrossRef]
  3. J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett.32(22), 3266–3268 (2007). [CrossRef] [PubMed]
  4. W. Han, H. Yi, Q. Dai, K. Wu, H. Zhang, L. Xia, and J. Liu, “Passive Q-switching laser performance of Yb:Gd3Ga5O12 garnet crystal,” Appl. Opt.52(18), 4329–4333 (2013). [CrossRef] [PubMed]
  5. J. Liu, Q. Dai, Y. Wan, W. Han, and X. Tian, “The potential of Yb:YCa4O(BO3)3 crystal in generating high-energy laser pulses,” Opt. Express21(8), 9365–9376 (2013). [CrossRef] [PubMed]
  6. T. Yubing, T. Huiming, P. Jiying, and L. Hongyi, “LD-pumped actively Q-switched Yb:YAG laser with an acoustic-optical modulator,” Laser Phys.18(1), 12–14 (2008). [CrossRef]
  7. V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. B. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuD9. [CrossRef]
  8. M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA46.
  9. E. C. Honea, R. J. Beach, S. C. Mitchell, and P. V. Avizonis, “183-W, M2 = 2.4 Yb:YAG Q-switched laser,” Opt. Lett.24(3), 154–156 (1999). [CrossRef] [PubMed]
  10. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett.25(11), 805–807 (2000). [CrossRef] [PubMed]
  11. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett.26(21), 1672–1674 (2001). [CrossRef] [PubMed]
  12. I. Johannsen, S. Erhard, and A. Giesen, “Q-switched Yb:YAG thin disk laser,” in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), paper MD3.
  13. A. K. Hankla and T. J. Carrig, “Q-switched, injection-seeded, single-frequency Yb:YAG disk laser,” in Advanced Solid-State Lasers, M. Fermann and L. Marshall, eds., Vol. 68 of Trends in Optics and Photonics Series (Optical Society of America, 2002), paper MD5.
  14. F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS), G. Quarles, ed., Vol. 94 of OSA Trends in Optics and Photonics (Optical Society of America, 2004), paper 237.
  15. P. Dekker, J. M. Dawes, and J. A. Piper, “2.27-W Q-switched self-doubling Yb:YAB laser with controllable pulse length,” J. Opt. Soc. Am. B22(2), 378–384 (2005). [CrossRef]
  16. A. Brenier, “Active Q-switching of the diode-pumped two-frequency Yb3+:KGd(WO4)2 laser,” IEEE J. Quantum Electron.47(3), 279–284 (2011). [CrossRef]
  17. O. Svelto, Principles of Lasers (Springer, 2010), Chaps. 7, 8.
  18. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003). [CrossRef]
  19. A. Novoselov, Y. Kagamitani, T. Kasamoto, Y. Guyot, H. Ohta, H. Shibata, A. Yoshikawa, G. Boulon, and T. Fukuda, “Crystal growth and characterization of Yb3+-doped Gd3Ga5O12,” Mater. Res. Bull.42(1), 27–32 (2007). [CrossRef]
  20. G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser,” IEEE J. Quantum Electron.7(6), 220–224 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited