OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26620–26630

Arbitrary birefringent metamaterials for holographic optics at λ = 1.55 μm

Yu-Ju Tsai, Stéphane Larouche, Talmage Tyler, Antonio Llopis, Matthew Royal, Nan M. Jokerst, and David R. Smith  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26620-26630 (2013)
http://dx.doi.org/10.1364/OE.21.026620


View Full Text Article

Enhanced HTML    Acrobat PDF (2600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents an optical element capable of multiplexing two diffraction patterns for two orthogonal linear polarizations, based on the use of non-resonant metamaterial cross elements. The metamaterial cross elements provide unique building blocks for engineering arbitrary birefringence. As a proof-of-concept demonstration, we present the design and experimental characterization of a polarization multiplexed blazed diffraction grating and a polarization multiplexed computer-generated hologram, for the telecommunication wavelength of λ = 1.55 μm. A quantitative study of the polarization multiplexed grating reveals that this approach yields a very large polarization contrast ratio. The results show that metamaterials can form the basis for a versatile and compact platform useful in the design of multi-functional photonic devices.

© 2013 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.5440) Optical devices : Polarization-selective devices
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: September 13, 2013
Revised Manuscript: October 10, 2013
Manuscript Accepted: October 13, 2013
Published: October 28, 2013

Citation
Yu-Ju Tsai, Stéphane Larouche, Talmage Tyler, Antonio Llopis, Matthew Royal, Nan M. Jokerst, and David R. Smith, "Arbitrary birefringent metamaterials for holographic optics at λ = 1.55 μm," Opt. Express 21, 26620-26630 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011). [CrossRef] [PubMed]
  2. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration Of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  4. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9(2), 129–132 (2010). [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  6. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater.12(1), 25–28 (2012). [CrossRef] [PubMed]
  7. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  8. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009). [CrossRef]
  9. J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation Optics and Subwavelength Control of Light,” Science337(6094), 549–552 (2012). [CrossRef] [PubMed]
  10. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett.95(4), 041106 (2009). [CrossRef]
  11. F. Xu, J. E. Ford, and Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt.34(2), 256–266 (1995). [CrossRef] [PubMed]
  12. R. K. Kostuk, M. Kato, and Y.-T. Huang, “Polarization Properties Of Substrate-Mode Holographic Interconnects,” Appl. Opt.29(26), 3848–3854 (1990). [CrossRef] [PubMed]
  13. A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “Form birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt.49(23), 4355–4361 (2010). [CrossRef] [PubMed]
  14. F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett.21(18), 1513–1515 (1996). [CrossRef] [PubMed]
  15. U. Levy, H.-C. Kim, C.-H. Tsai, and Y. Fainman, “Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation,” Opt. Lett.30(16), 2089–2091 (2005). [CrossRef] [PubMed]
  16. M. S. Mirotznik, D. M. Pustai, D. W. Prather, and J. N. Mait, “Design of Two-Dimensional Polarization-Selective Diffractive Optical Elements with Form-Birefringent Microstructures,” Appl. Opt.43(32), 5947–5954 (2004). [CrossRef] [PubMed]
  17. W. Yu, T. Konishi, T. Hamamoto, H. Toyota, T. Yotsuya, and Y. Ichioka, “Polarization-Multiplexed Diffractive Optical Elements Fabricated by Subwavelength Structures,” Appl. Opt.41(1), 96–100 (2002). [CrossRef] [PubMed]
  18. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express14(9), 3785–3791 (2006). [CrossRef] [PubMed]
  19. E. Schonbrun, K. Seo, and K. B. Crozier, “Reconfigurable Imaging Systems Using Elliptical Nanowires,” Nano Lett.11(10), 4299–4303 (2011). [CrossRef] [PubMed]
  20. B. Kress, Applied digital optics: from micro-optics to nanophotonics (Wiley, Chichester, U.K., 2009).
  21. B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, “Spatial and Spectral Light Shaping with Metamaterials,” Adv. Mater.24(47), 6300–6304 (2012). [CrossRef] [PubMed]
  22. A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nat. Photonics5(6), 357–359 (2011). [CrossRef]
  23. V. N. Smolyaninova, H. K. Ermer, A. Piazza, D. Schaefer, and I. I. Smolyaninov, “Experimental demonstration of birefrigent transformation optics devices,” Phys. Rev. B87(7), 075406 (2013). [CrossRef]
  24. S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater.11(5), 450–454 (2012). [CrossRef] [PubMed]
  25. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband Light Bending with Plasmonic Nanoantennas,” Science335(6067), 427 (2012). [CrossRef] [PubMed]
  26. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science334(6054), 333–337 (2011). [CrossRef] [PubMed]
  27. Y. Zhao and A. Alù, “Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates,” Nano Lett.13(3), 1086–1091 (2013). [CrossRef] [PubMed]
  28. Y. J. Tsai, S. Larouche, T. Tyler, G. Lipworth, N. M. Jokerst, and D. R. Smith, “Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths,” Opt. Express19(24), 24411–24423 (2011). [CrossRef] [PubMed]
  29. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  30. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002). [CrossRef]
  31. B. Goebel, L. L. Wang, and T. Tschudi, “Multilayer technology for diffractive optical elements,” Appl. Opt.35(22), 4490–4493 (1996). [CrossRef] [PubMed]
  32. R. W. Gerchber and W. O. Saxton, “Pratical Algorithm for determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237–246 (1972).
  33. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett.35(3), 336–338 (2010). [CrossRef] [PubMed]
  34. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008). [CrossRef]
  35. T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268(5219), 1873–1875 (1995). [CrossRef] [PubMed]
  36. H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the Art in Stereoscopic and Autostereoscopic Displays,” Proc. IEEE99(4), 540–555 (2011). [CrossRef]
  37. T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss, “Polarization Spectroscopy of Single Fluorescent Molecules,” J. Phys. Chem. B103(33), 6839–6850 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited