OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26642–26656

Color rendition engineering of phosphor-converted light-emitting diodes

Artūras Žukauskas, Rimantas Vaicekauskas, Pranciškus Vitta, Akvilė Zabiliūtė, Andrius Petrulis, and Michael Shur  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26642-26656 (2013)
http://dx.doi.org/10.1364/OE.21.026642


View Full Text Article

Enhanced HTML    Acrobat PDF (1989 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an approach to the optimization of the trichromatic spectral power distributions (SPDs) of phosphor-converted (p-c) light-emitting diodes (LEDs) in respect of each of four different color rendition properties (high color fidelity, color saturating, color dulling, and color preference). The approach is based on selecting a model family of Eu2+ phosphors and finding the optimal peak wavelengths of the phosphor bands as functions of the luminous efficacy of radiation. A blue component due to either phosphor photoluminescence or InGaN electroluminescence with the peak wavelength at about 460 nm was found to be an optimal one for the high-fidelity, color-dulling, and color-preference LEDs. The high-fidelity and color-preference LEDs need red phosphors with the peak wavelength of 610-615 nm. The high-fidelity LEDs were shown to require a true green (~530 nm) phosphor component, whereas a cyan (~510 nm) component is the prerequisite of the color-saturating and color-preference LEDs. Deep-blue (~445 nm) and deep-red (~625 nm) components are required for the color-saturating LEDs. A broad yellow band similar to that of Ce3+ emission is to be used in the color-dulling LEDs. The SPDs of practical phosphor blends for the high-fidelity, color-saturating, and color-preference p-c LEDs are demonstrated.

© 2013 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.5690) Materials : Rare-earth-doped materials
(230.3670) Optical devices : Light-emitting diodes
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism

ToC Category:
Optical Devices

History
Original Manuscript: June 14, 2013
Revised Manuscript: September 28, 2013
Manuscript Accepted: October 1, 2013
Published: October 29, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Artūras Žukauskas, Rimantas Vaicekauskas, Pranciškus Vitta, Akvilė Zabiliūtė, Andrius Petrulis, and Michael Shur, "Color rendition engineering of phosphor-converted light-emitting diodes," Opt. Express 21, 26642-26656 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Wyszecki and W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae (Wiley, 2000).
  2. M. Shur and A. Žukauskas, “Solid-state lighting: Toward superior illumination,” Proc. IEEE93(10), 1691–1703 (2005). [CrossRef]
  3. Commission Internationale de l’Éclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3, 1995.
  4. Commission Internationale de l’Éclairage, “Colour rendering of white LED sources,” Pub. CIE 177, 2007.
  5. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl.33(3), 192–202 (2008). [CrossRef]
  6. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010). [CrossRef]
  7. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, P. Vitta, and M. S. Shur, “Statistical approach to color quality of solid-state lamps,” IEEE J. Sel. Top. Quantum Electron.15(6), 1753–1762 (2009). [CrossRef]
  8. D. Lebedenko and R. Vaicekauskas, “Light source assessment,” Vilnius University Lighting Group, http://demo.lrg.projektas.vu.lt/lcq/en/ .
  9. D. B. Judd, “A flattery index for artificial illuminants,” Illum. Eng.62, 593–598 (1967).
  10. W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am.62(2), 191–194 (1972). [CrossRef] [PubMed]
  11. W. A. Thornton, “A validation of the color-preference index,” J. Illum. Engr. Soc.4, 48–52 (1974).
  12. R. S. Berns, “Designing white-light LED lighting for the display of art: A feasibility study,” Color Res. Appl.36(5), 324–334 (2011). [CrossRef]
  13. A. Liu, A. Tuzikas, A. Žukauskas, R. Vaicekauskas, P. Vitta, and M. Shur, “Cultural preferences to color quality of illumination of different artwork objects revealed by a color rendition engine,” IEEE Photonics J.5(4), 6801010 (2013). [CrossRef]
  14. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Rendering a color palette by light-emitting diodes,” Appl. Phys. Lett.93(2), 021109 (2008). [CrossRef]
  15. A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Solid-state lamps with optimized color saturation ability,” Opt. Express18(3), 2287–2295 (2010). [CrossRef] [PubMed]
  16. A. Žukauskas, R. Vaicekauskas, and M. Shur, “Color-dulling solid-state sources of light,” Opt. Express20(9), 9755–9762 (2012). [CrossRef] [PubMed]
  17. A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, and M. Shur, “Color rendition engine,” Opt. Express20(5), 5356–5367 (2012). [CrossRef] [PubMed]
  18. W. A. Thornton, “Luminosity and color-rendering capability of white light,” J. Opt. Soc. Am.61(9), 1155–1163 (1971). [CrossRef] [PubMed]
  19. H. H. Haft and W. A. Thornton, “High performance fluorescent lamps,” J. Illum. Engr. Soc.2, 29–35 (1972).
  20. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevičius, and M. S. Shur, “Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering,” Appl. Phys. Lett.93(5), 051115 (2008). [CrossRef]
  21. T. Jüstel, “Luminescent materials for phosphor-converted LEDs,” Luminescence, C. Ronda, ed. (Wiley, 2008), pp. 179‒190.
  22. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques, and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010). [CrossRef]
  23. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc.158(6), R37–R54 (2011). [CrossRef]
  24. R.-J. Xie, Y. Q. Li, N. Hirosaki, and H. Yamamoto, Nitride Phosphors and Solid-State Lighting (CRC/Taylor & Francis, 2011).
  25. R. R. Jacobs, W. F. Krupke, and M. J. Weber, “Measurement of excited‐state‐absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers,” Appl. Phys. Lett.33(5), 410–412 (1978). [CrossRef]
  26. Phosphor Handbook, S. Shionoya and W. M. Yen, eds. (CRC Press, Boca Raton, 1999).
  27. P. Dorenbos, “Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds,” J. Lumin.104(4), 239–260 (2003). [CrossRef]
  28. W. Lehmann, “Emission spectra of (Zn,Cd)S phosphors,” J. Electrochem. Soc.110(7), 754–758 (1963). [CrossRef]
  29. G. He and L. Zheng, “White-light LED clusters with high color rendering,” Opt. Lett.35(17), 2955–2957 (2010). [CrossRef] [PubMed]
  30. M.-C. Chien and C.-H. Tien, “Multispectral mixing scheme for LED clusters with extended operational temperature window,” Opt. Express20(S2Suppl 2), A245–A254 (2012). [CrossRef] [PubMed]
  31. B. K. Ridley, Quantum Processes in Semiconductors (Oxford University Press, 2006).
  32. A. Žukauskas, R. Vaicekauskas, and P. Vitta, “Optimization of solid-state lamps for photobiologically friendly mesopic lighting,” Appl. Opt.51(35), 8423–8432 (2012). [CrossRef] [PubMed]
  33. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron.8(2), 339–345 (2002). [CrossRef]
  34. W. M. Yen and M. J. Weber, Inorganic Phosphors: Compositions, Preparation, and Optical Properties, (CRC Press, 2004).
  35. Y. Hu, W. Zhuang, H. Ye, S. Zhang, Y. Fang, and X. Huang, “Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED,” J. Lumin.111(3), 139–145 (2005). [CrossRef]
  36. X. Zhang, L. Liang, J. Zhang, and Q. Su, “Luminescence properties of (Ca1-x,Srx)Se:Eu2+ phosphors for white LEDs application,” Mater. Lett.59(7), 749–753 (2005). [CrossRef]
  37. H. Menkara, C. Summers, and B. K. Wagner, “Light-emitting device having thio-selenide fluorescent phosphor,” U.S. patent No 7,109,648 (2006).
  38. T. L. Barry, “Fluorescence of Eu2+-activated phases of binary alkaline earth orthosilicate systems,” J. Electrochem. Soc.115(11), 1181–1184 (1968). [CrossRef]
  39. H. Menkara and C. Summers, “Light emitting device having silicate fluorescent phosphor,” U.S. Patent No 6,982,045 (2006).
  40. S. Cheng, D. Tao, Y. Dong, and Y.-Q. Li, “Silicate-based orange phosphors,” U.S. Patent No 7,655,156 (2010).
  41. S. Liu, S. Cheng, and Y.-Q. Li, “Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations,” U.S. Patent No 7,648,650 (2010).
  42. Y. Dong, N. Wang, S. Cheng, and Y.-Q. Li, “Aluminate based blue phosphors”, U.S. Patent No 7,390,437 (2008).
  43. M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-enhanced white-light-emitting diode using a new red phosphor,” Jpn. J. Appl. Phys.42(Part 2, No.1A/B), L20–L23 (2003). [CrossRef]
  44. Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence properties of red-emitting M2Si5N8:Eu2+ (M = Ca, Sr, Ba) LED conversion phosphors,” J. Alloy. Comp.417(1-2), 273–279 (2006). [CrossRef]
  45. R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor-converted white light-emitting diode,” Phys. Status Solidi A202(9), 1727–1732 (2005). [CrossRef]
  46. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006). [CrossRef]
  47. S. Liu, D. Tao, X. Yuan, and Y.-Q. Li, “Nitride based red-emitting phosphors” U.S. Patent No 8,274,215 (2012).
  48. F. Stadler, O. Oeckler, H. A. Höppe, M. H. Möller, R. Pöttgen, B. D. Mosel, P. Schmidt, V. Duppel, A. Simon, and W. Schnick, “Crystal structure, physical properties and HRTEM investigation of the new oxonitridosilicate EuSi2O2N2,” Chemistry12(26), 6984–6990 (2006). [CrossRef] [PubMed]
  49. V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, and A. Meijerink, “Color point tuning for (Ca,Sr,Ba)Si2O2N2:Eu2+ for white LEDs,” Chem. Mater.21(2), 316–325 (2009). [CrossRef]
  50. J. W. H. van Krevel, J. W. T. van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence properties of terbium-, cerium-, or europium-doped α-Sialon materials,” J. Solid State Chem.165(1), 19–24 (2002). [CrossRef]
  51. R.-J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+ doped Ca-α-SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett.84(26), 5404–5406 (2004). [CrossRef]
  52. N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes,” Appl. Phys. Lett.86(21), 211905 (2005). [CrossRef]
  53. X. X. Luo, W. H. Cao, and F. Sun, “The development of silicate matrix phosphors with broad excitation band for phosphor-converted white LED,” Chin. Sci. Bull.53(19), 2923–2930 (2008). [CrossRef]
  54. H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids61(12), 2001–2006 (2000). [CrossRef]
  55. A. Žukauskas and R. Vaicekauskas, “LEDs in lighting with tailored color quality,” Int. J. High Speed Electron. Syst.20(02), 287–301 (2011). [CrossRef]
  56. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett.80(2), 234–236 (2002). [CrossRef]
  57. H. F. Ivey, “Color and efficiency of luminescent light sources,” J. Opt. Soc. Am.53(10), 1185–1198 (1963). [CrossRef]
  58. P. J. Bouma, “The colour reproduction of incandescent lamps and ‘Philiphan’ glass,” Philips’ Technol. Rev.3, 47–49 (1938).
  59. A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Color rendition properties of solid-state lamps,” J. Phys. D Appl. Phys.43(35), 354006 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited