OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26671–26676

High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement

Antonio M. Caravaca-Aguirre, Donald B. Conkey, Jacob D. Dove, Hengyi Ju, Todd W. Murray, and Rafael Piestun  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26671-26676 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1040 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate enhanced three-dimensional photoacoustic imaging behind a scattering material by increasing the fluence in the ultrasound transducer focus. We enhance the optical intensity using wavefront shaping before the scatterer. The photoacoustic signal induced by an object placed behind the scattering medium serves as feedback to optimize the wavefront, enabling one order of magnitude enhancement of the photoacoustic amplitude. Using the enhanced optical intensity, we scan the object in two-dimensions before post-processing of the data to reconstruct the image. The temporal profile of the photoacoustic signal provides the information used to reconstruct the third dimension.

© 2013 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(110.7050) Imaging systems : Turbid media
(110.0113) Imaging systems : Imaging through turbid media
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

Original Manuscript: August 5, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: October 23, 2013
Published: October 29, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Antonio M. Caravaca-Aguirre, Donald B. Conkey, Jacob D. Dove, Hengyi Ju, Todd W. Murray, and Rafael Piestun, "High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement," Opt. Express 21, 26671-26676 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  2. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light Propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010). [CrossRef] [PubMed]
  3. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008). [CrossRef] [PubMed]
  4. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008). [CrossRef] [PubMed]
  5. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012). [CrossRef] [PubMed]
  6. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express18(12), 12283–12290 (2010). [CrossRef] [PubMed]
  7. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012). [CrossRef] [PubMed]
  8. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011). [CrossRef]
  9. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011). [CrossRef] [PubMed]
  10. B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics7(4), 300–305 (2013). [CrossRef] [PubMed]
  11. K. Si, R. Fiolka, and M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep.2, 748 (2012). [CrossRef] [PubMed]
  12. A. G. Bell, “Upon the production and reproduction of sound by light,” J. Soc. Telegr. Eng.9, 404–426 (1880).
  13. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006). [CrossRef] [PubMed]
  14. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett.23(8), 648–650 (1998). [CrossRef] [PubMed]
  15. F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media,” Opt. Lett.36(11), 2053–2055 (2011). [CrossRef] [PubMed]
  16. T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix” arXiv:optics 1305.6246, (2013).
  17. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express20(5), 4840–4849 (2012). [CrossRef] [PubMed]
  18. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012). [CrossRef] [PubMed]
  19. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited