OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26677–26687

Near-field effect in the infrared range through periodic Germanium subwavelength arrays

Wei Dong, Toru Hirohata, Kazutoshi Nakajima, and Xiaoping Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26677-26687 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using finite-difference-time-domain simulation, we have studied the near-field effect of Germanium (Ge) subwavelength arrays designed in-plane with a normal incidence. Spectra of vertical electric field component normal to the surface show pronounced resonance peaks in an infrared range, which can be applied in a quantum well infrared photodetector. Unlike the near-field optics in metallic systems that are commonly related to surface plasmons, the intense vertical field along the surface of the Ge film can be interpreted as a combination of diffraction and waveguide theory. The existence of the enhanced field is confirmed by measuring the Fourier transform infrared spectra of fabricated samples. The positions of the resonant peaks obtained in experiment are in good agreement with our simulations.

© 2013 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3060) Integrated optics : Infrared
(230.7400) Optical devices : Waveguides, slab
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: August 9, 2013
Revised Manuscript: October 5, 2013
Manuscript Accepted: October 15, 2013
Published: October 29, 2013

Wei Dong, Toru Hirohata, Kazutoshi Nakajima, and Xiaoping Wang, "Near-field effect in the infrared range through periodic Germanium subwavelength arrays," Opt. Express 21, 26677-26687 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010). [CrossRef]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  5. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  6. B. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys.74(8), R1–R81 (1993). [CrossRef]
  7. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  8. T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am B.16(10), 1743–1748 (1999). [CrossRef]
  9. P. A. Hobson, S. Wedge, J. A. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light‐Emitting Diodes,” Adv. Mater.14(19), 1393–1396 (2002). [CrossRef]
  10. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  11. M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002). [CrossRef]
  12. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006). [CrossRef] [PubMed]
  13. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008). [CrossRef] [PubMed]
  14. C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode,” Phys. Rev. B86(3), 035108 (2012). [CrossRef]
  15. S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagić, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express20(5), 5622–5628 (2012). [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids: Index (Academic press, 1998).
  17. S.-H. Chang, S. Gray, and G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005). [CrossRef] [PubMed]
  18. S. C. Lee, S. Krishna, and S. R. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express17(25), 23160–23168 (2009). [CrossRef] [PubMed]
  19. V. Canpean and S. Astilean, “Multifunctional plasmonic sensors on low-cost subwavelength metallic nanoholes arrays,” Lab Chip9(24), 3574–3579 (2009). [CrossRef] [PubMed]
  20. K.-L. Lee, S.-H. Wu, and P.-K. Wei, “Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing,” Opt. Express17(25), 23104–23113 (2009). [CrossRef] [PubMed]
  21. H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  22. C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003). [CrossRef]
  23. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  24. A. W. Snyder and J. Love, Optical waveguide theory (Springer, 1983).
  25. J. Andersson and L. Lundqvist, “Grating-coupled quantum-well infrared detectors: Theory and performance,” J. Appl. Phys.71(7), 3600–3610 (1992). [CrossRef]
  26. L. Lundqvist, J. Andersson, Z. Paska, J. Borglind, and D. Haga, “Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors,” Appl. Phys. Lett.63(24), 3361–3363 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited