OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26693–26713

Transient radiative transfer in a scattering slab considering polarization

Hongliang Yi, Xun Ben, and Heping Tan  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26693-26713 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.

© 2013 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(290.5855) Scattering : Scattering, polarization
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:

Original Manuscript: August 19, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 14, 2013
Published: October 29, 2013

Hongliang Yi, Xun Ben, and Heping Tan, "Transient radiative transfer in a scattering slab considering polarization," Opt. Express 21, 26693-26713 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt.40(30), 5495–5502 (2001). [CrossRef] [PubMed]
  2. X. D. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, “Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments,” J. Biomed. Opt.8(4), 608–617 (2003). [CrossRef] [PubMed]
  3. E. A. Sergeeva and A. I. Korytin, “Theoretical and experimental study of blurring of a femtosecond laser pulse in a turbid medium,” Radiophys. Quantum Electron.51(4), 301–314 (2008). [CrossRef]
  4. S. C. Mishra, P. Chugh, P. Kumar, and K. Mitra, “Development and comparison of the DTM, the DOM and the FVM formulations for the short-pulse laser transport through a participating medium,” Int. J. Heat Mass Transfer49(11-12), 1820–1832 (2006). [CrossRef]
  5. M. Sakami, K. Mitra, and P. F. Hsu, “Analysis of light pulse transport through two-dimensional scattering and absorbing media,” J. Quant. Spectrosc. Radiat. Transf.73(2-5), 169–179 (2002). [CrossRef]
  6. J. M. Wang and C. Y. Wu, “Transient radiative transfer in a scattering slab with variable refractive index and diffuse substrate,” Int. J. Heat Mass Transfer53(19-20), 3799–3806 (2010). [CrossRef]
  7. J. M. Wang and C. Y. Wu, “Second-order-accurate discrete ordinates solutions of transient radiative transfer in a scattering slab with variable refractive index,” Int. Commun. Heat Mass Transf.38(9), 1213–1218 (2011). [CrossRef]
  8. M. Akamatsu and Z. X. Guo, “Ultrafast radiative heat transfer in three-dimensional highly-scattering media subjected to pulse train irradiation,” Numer. Heat Tranf. Anal. Appl.59, 653–671 (2011).
  9. Z. X. Guo, S. Kumar, and K. C. San, “Multidimensional Monte Carlo simulation of short-pulse laser transport in scattering media,” J. Thermophys. Heat Transf.14, 504–511 (2000).
  10. P. F. Hsu, “Effects of multiple scattering and reflective boundary on the transient radiative transfer process,” Int. J. Therm. Sci.40(6), 539–549 (2001). [CrossRef]
  11. C. Y. Wu, “Monte Carlo simulation of transient radiative transfer in a medium with a variable refractive index,” Int. J. Heat Mass Transfer52(19-20), 4151–4159 (2009). [CrossRef]
  12. P. Rath, C. S. Mishra, P. Mahanta, U. K. Saha, and K. Mitra, “Discrete transfer method applied to transient radiative transfer problems in participating medium,” Numer. Heat Tranf. Anal. Appl.44, 183–197 (2003).
  13. R. Singh, S. C. Mishra, N. K. Roy, N. S. Shekhawat, and K. Mitra, “An insight into the modeling of short-pulse laser transport through a participating medium,” Numer Heat Tranf. B-Fundam.52(4), 373–385 (2007). [CrossRef]
  14. J. C. Chai, “One-dimensional transient radiation heat transfer modeling using a finite-volume method,” Numer Heat Tranf. B-Fundam.44(2), 187–208 (2003). [CrossRef]
  15. J. C. Chai, P. F. Hsu, and Y. C. Lam, “Three-dimensional transient radiative transfer modeling using the finite-volume method,” J. Quant. Spectrosc. Radiat. Transf.86(3), 299–313 (2004). [CrossRef]
  16. S. C. Mishra, R. Muthukumaran, and S. Maruyama, “The finite volume method approach to the collapsed dimension method in analyzing steady/transient radiative transfer problems in participating media,” Int. Commun. Heat Mass Transf.38(3), 291–297 (2011). [CrossRef]
  17. C. Y. Wu and S. H. Wu, “Integral equation formulation for transient radiative transfer in an anisotropically scattering medium,” Int. J. Heat Mass Transfer43(11), 2009–2020 (2000). [CrossRef]
  18. S. H. Wu and C. Y. Wu, “Time-resolved spatial distribution of scattered radiative energy in a two-dimensional cylindrical medium with a large mean free path for scattering,” Int. J. Heat Mass Transfer44(14), 2611–2619 (2001). [CrossRef]
  19. G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt.7(8), 1519–1527 (1968). [CrossRef] [PubMed]
  20. R. D. M. Garcia and C. E. Siewert, “The FN method for radiative transfer models that in include polarization effects,” J. Quant. Spectrosc. Radiat. Transf.41(2), 117–145 (1989). [CrossRef]
  21. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transf.46(5), 413–423 (1991). [CrossRef]
  22. C. E. Siewert, “A discrete-ordinates solution for radiative-transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf.64(3), 227–254 (2000). [CrossRef]
  23. J. Lenoble, M. Herman, J. L. Deuze, B. Lafrance, R. Santer, and D. Tanre, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transf.107(3), 479–507 (2007). [CrossRef]
  24. F. Xu, R. A. West, and A. B. Davis, “A hybrid method for modeling polarized radiative transfer in a spherical-shell planetary atmosphere,” J. Quant. Spectrosc. Radiat. Transf.117, 59–70 (2013). [CrossRef]
  25. H. Ishimoto and K. Masuda, “A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam,” J. Quant. Spectrosc. Radiat. Transf.72(4), 467–483 (2002). [CrossRef]
  26. X. D. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002). [CrossRef] [PubMed]
  27. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express12(26), 6530–6539 (2004). [CrossRef] [PubMed]
  28. R. Vaillon, B. T. Wong, and M. P. Mengüç, “Polarized radiative transfer in a particle-laden semi-transparent medium via a vector Monte Carlo method,” J. Quant. Spectrosc. Radiat. Transf.84(4), 383–394 (2004). [CrossRef]
  29. C. Davis, C. Emde, and R. Harwood, “A 3-D polarized reversed monte carlo radiative transfer model for millimeter and submillimeter passive remote sensing in cloudy atmospheres,” IEEE Trans. Geosci. Rem. Sens.43(5), 1096–1101 (2005). [CrossRef]
  30. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express13(12), 4420–4438 (2005). [CrossRef] [PubMed]
  31. J. N. Swamy, C. Crofcheck, and M. P. Mengüç, “A Monte Carlo ray tracing study of polarized light propagation in liquid foams,” J. Quant. Spectrosc. Radiat. Transf.104(2), 277–287 (2007). [CrossRef]
  32. C. Cornet, L. C. Labonnote, and F. Szczap, “Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transf.111(1), 174–186 (2010). [CrossRef]
  33. M. Sakami and A. Dogariu, “Polarized light-pulse transport through scattering media,” J. Opt. Soc. Am. A23(3), 664–670 (2006). [CrossRef] [PubMed]
  34. Y. A. Ilyushin and Y. P. Budak, “Analysis of the propagation of the femtosecond laser pulse in the scattering medium,” Comput. Phys. Commun.182(4), 940–945 (2011). [CrossRef]
  35. S. Chandrasekhar, Radiative Transfer (Oxford University, 1950).
  36. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  37. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).
  38. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt.40(3), 400–412 (2001). [CrossRef] [PubMed]
  39. R. Green, Spherical Astronomy (Cambridge University, 1985).
  40. B. A. Whitney, “Monte Carlo radiative transfer,” Arxiv preprint arXiv: 1104.4990 (2011).
  41. K. Masuda and T. Takashima, “Computational accuracy of radiation emerging from the ocean surface in the model atmosphere–ocean system,” Pap. Meteorol. Geophys.37(1), 1–13 (1986). [CrossRef]
  42. G. W. Kattawar and C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere–ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr.34(8), 1453–1472 (1989). [CrossRef]
  43. P. W. Zhai, Y. X. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, “A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface,” J. Quant. Spectrosc. Radiat. Transf.111(7-8), 1025–1040 (2010). [CrossRef]
  44. E. R. Sommersten, J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, “Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two medium with different refractive indices,” J. Quant. Spectrosc. Radiat. Transf.111(4), 616–633 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited