OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26714–26720

Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement

Li-Peng Sun, Jie Li, Yanzhen Tan, Shuai Gao, Long Jin, and Bai-Ou Guan  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26714-26720 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1699 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the bending effect of microfiber on interference fringes in a compact taper-based modal interferometer and sensitivity for refractive index (RI) measurement. For the bend curvature ranging from 0 to 0.283 mm−1, the measured RI sensitivity distinctively increases from 342.5 nm/RIU (refractive-index unit) to 1192.7nm/RIU around RI = 1.333 and from 3847.1 nm/RIU to 11006.0 nm/RIU around RI = 1.430, respectively. Theoretical analysis reveals that such enhancement is determined by the dispersion property of the intermodal index rather than other parameters, such as the variation of the straightforward evanescent field. The magnitude of sensitivity varies as a function of the microfiber bend curvature. Approaching a critical curvature (the intermodal-index dispersion factor approaches zero), the sensitivity is significantly enhanced, exhibiting great potential in RI sensing areas.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1150) Optical devices : All-optical devices
(230.3990) Optical devices : Micro-optical devices
(260.3160) Physical optics : Interference

ToC Category:

Original Manuscript: September 3, 2013
Revised Manuscript: October 20, 2013
Manuscript Accepted: October 23, 2013
Published: October 29, 2013

Li-Peng Sun, Jie Li, Yanzhen Tan, Shuai Gao, Long Jin, and Bai-Ou Guan, "Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement," Opt. Express 21, 26714-26720 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt.38(16), 3450–3459 (1999). [CrossRef] [PubMed]
  2. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol.12(7), 765–770 (2001). [CrossRef]
  3. B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H. L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel)11(12), 5729–5739 (2011). [CrossRef] [PubMed]
  4. Z. B. Tian and S. S. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett.21(3), 161–163 (2009). [CrossRef]
  5. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006). [CrossRef]
  6. T. Wei, X. Lan, and H. Xiao, “Fiber inline core–cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett.21(10), 669–671 (2009). [CrossRef]
  7. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt.50(28), 5503–5507 (2011). [CrossRef] [PubMed]
  8. M. Zibaii, O. Frazao, H. Latifi, and P. A. S. Jorge, “Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror,” IEEE Photon. Technol. Lett.23(17), 1219–1221 (2011). [CrossRef]
  9. Z. B. Tian, S. S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008). [CrossRef] [PubMed]
  10. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett.37(11), 1974–1976 (2012). [CrossRef] [PubMed]
  11. C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, and J. Wang, “Temperature-insensitive optical fiber two-dimensional micrometric displacement sensor based on an in-line Mach–Zehnder interferometer,” J. Opt. Soc. Am. B29(5), 1136–1140 (2012). [CrossRef]
  12. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?id=132856 . [CrossRef] [PubMed]
  13. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt.12(4), 043001 (2010). [CrossRef]
  14. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express17(24), 21882–21890 (2009). [CrossRef] [PubMed]
  15. J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: A Review,” Sensors (Basel)12(12), 8861–8876 (2012). [CrossRef] [PubMed]
  16. J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011). [CrossRef] [PubMed]
  17. D. T. Cassidy, D. C. Johnson, and K. O. Hill, “Wavelength-dependent transmission of monomode optical fiber tapers,” Appl. Opt.24(7), 945–950 (1985). [CrossRef] [PubMed]
  18. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. A66(3), 216–220 (1976). [CrossRef]
  19. M. Koshiba and Y. Tsuji, “Curvillinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol.18(5), 737–743 (2000). [CrossRef]
  20. M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).
  21. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am.64(8), 1107–1110 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited