OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26721–26728

Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial

Jianfa Zhang, Kevin F. MacDonald, and Nikolay I. Zheludev  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26721-26728 (2013)
http://dx.doi.org/10.1364/OE.21.026721


View Full Text Article

Enhanced HTML    Acrobat PDF (3116 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical responses in conventional metamaterials based on plasmonic metal nanostructures are inevitably accompanied by Joule losses, which obstruct practical applications by limiting resonance quality factors and compromising the efficiency of metamaterial devices. Here we experimentally demonstrate a fully-dielectric metamaterial that exhibits a ‘trapped mode’ resonance at optical frequencies, founded upon the excitation by incident light of anti-parallel displacement currents in meta-molecules comprising pairs of parallel, geometrically dissimilar dielectric nano-bars. The phenomenon is demonstrated in the near-infrared part of the spectrum using silicon, showing that in principle strong, lossless resonant responses are possible anywhere in the optical spectral range.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.3918) Materials : Metamaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: August 29, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: October 22, 2013
Published: October 29, 2013

Citation
Jianfa Zhang, Kevin F. MacDonald, and Nikolay I. Zheludev, "Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial," Opt. Express 21, 26721-26728 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26721


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  2. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11(11), 917–924 (2012). [CrossRef] [PubMed]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  5. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010). [CrossRef] [PubMed]
  6. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497(7450), 470–474 (2013). [CrossRef] [PubMed]
  7. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517 (2011). [CrossRef] [PubMed]
  8. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt.14(2), 024005 (2012). [CrossRef]
  9. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater.25(22), 3050–3054 (2013). [CrossRef] [PubMed]
  10. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. App.1(7), e18 (2012). [CrossRef]
  11. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol.5(11), 783–787 (2010). [CrossRef] [PubMed]
  12. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009). [CrossRef] [PubMed]
  13. Z. G. Dong, H. Liu, T. Li, Z. H. Zhu, S. M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett.96(4), 044104 (2010). [CrossRef]
  14. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010). [CrossRef] [PubMed]
  15. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011). [CrossRef] [PubMed]
  16. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett.99(10), 107401 (2007). [CrossRef] [PubMed]
  17. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett.102(13), 133901 (2009). [CrossRef] [PubMed]
  18. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19(6), 4815–4826 (2011). [CrossRef] [PubMed]
  19. L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater.24(44), 5934–5938 (2012). [CrossRef] [PubMed]
  20. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. B. Zhang, and B. S. Luk’yanchuk, “Magnetic light,” Sci Rep2, 492 (2012). [CrossRef] [PubMed]
  21. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012). [CrossRef] [PubMed]
  22. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett.98(15), 157403 (2007). [CrossRef] [PubMed]
  23. B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett.100(20), 207401 (2008). [CrossRef] [PubMed]
  24. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12(12), 60–69 (2009). [CrossRef]
  25. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012). [CrossRef] [PubMed]
  26. S. Liu, J. F. Ihlefeld, J. Dominguez, E. F. Gonzales, J. E. Bower, D. B. Burckel, M. B. Sinclair, and I. Brener, “Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process,” Appl. Phys. Lett.102(16), 161905 (2013). [CrossRef]
  27. L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat Commun4, 1904 (2013). [CrossRef] [PubMed]
  28. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007). [CrossRef] [PubMed]
  29. V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt.14(3), 035103 (2012). [CrossRef]
  30. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett.84(15), 2943–2945 (2004). [CrossRef]
  31. B. S. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  32. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003). [CrossRef] [PubMed]
  33. R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.76(2), 026606 (2007). [CrossRef] [PubMed]
  34. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  35. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010). [CrossRef] [PubMed]
  36. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008). [CrossRef]
  37. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Nonlinear dielectric optomechanical metamaterials,” Light Sci. App.2(8), e96 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited