OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26742–26761

Mode control and mode conversion in nonlinear aluminum nitride waveguides

Matthias Stegmaier and Wolfram H.P. Pernice  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26742-26761 (2013)
http://dx.doi.org/10.1364/OE.21.026742


View Full Text Article

Enhanced HTML    Acrobat PDF (4078 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

While single-mode waveguides are commonly used in integrated photonic circuits, emerging applications in nonlinear and quantum optics rely fundamentally on interactions between modes of different order. Here we propose several methods to evaluate the modal composition of both externally and device-internally excited guided waves and discuss a technique for efficient excitation of arbitrary modes. The applicability of these methods is verified in photonic circuits based on aluminum nitride. We control modal excitation through suitably engineered grating couplers and are able to perform a detailed study of waveguide-internal second harmonic generation. Efficient and broadband power conversion between orthogonal polarizations is realized within an asymmetric directional coupler to demonstrate selective excitation of arbitrary higher-order modes. Our approach holds promise for applications in nonlinear optics and frequency up/down-mixing in a chipscale framework.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(160.6000) Materials : Semiconductor materials
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: September 6, 2013
Revised Manuscript: October 19, 2013
Manuscript Accepted: October 22, 2013
Published: October 29, 2013

Citation
Matthias Stegmaier and Wolfram H.P. Pernice, "Mode control and mode conversion in nonlinear aluminum nitride waveguides," Opt. Express 21, 26742-26761 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26742


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress [Invited],” J. Opt. Soc. Am. B28(12), A1–A10 (2011). [CrossRef]
  2. A. Politi, J. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron.15(6), 1673–1684 (2009). [CrossRef]
  3. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008). [CrossRef] [PubMed]
  4. M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O'Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits Devices Syst.5(2), 94–102 (2011). [CrossRef]
  5. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011). [CrossRef] [PubMed]
  6. S. V. Rao, K. Moutzouris, and M. Ebrahimzadeh, “Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques,” J. Opt. A-Pure. Appl. Opt.6, 569 (2004).
  7. Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, and S. G. Johnson, “High-efficiency second-harmonic generation in doubly-resonant χ² microring resonators,” Opt. Express20(7), 7526–7543 (2012). [CrossRef] [PubMed]
  8. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express19(12), 11415–11421 (2011). [CrossRef] [PubMed]
  9. M. C. Booth, M. Atatüre, G. Di Giuseppe, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Counterpropagating entangled photons from a waveguide with periodic nonlinearity,” Phys. Rev. A66(2), 023815 (2002). [CrossRef]
  10. K. Banaszek, A. B. U’ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett.26(17), 1367–1369 (2001). [CrossRef] [PubMed]
  11. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  12. J. L. O’Brien, “Optical quantum computing,” Science318(5856), 1567–1570 (2007). [CrossRef] [PubMed]
  13. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462(7269), 78–82 (2009). [CrossRef] [PubMed]
  14. T. P. M. Alegre, A. Safavi-Naeini, M. Winger, and O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” Opt. Express19(6), 5658–5669 (2011). [CrossRef] [PubMed]
  15. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012). [CrossRef]
  16. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett.100(9), 091105 (2012). [CrossRef]
  17. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012). [CrossRef]
  18. P. Rath, S. Khasminskaya, C. Nebel, C. Wild, and W. H. P. Pernice, “Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films,” Beilstein J Nanotechnol4, 300–305 (2013). [CrossRef] [PubMed]
  19. S. Ghosh, C. R. Doerr, and G. Piazza, “Aluminum nitride grating couplers,” Appl. Opt.51(17), 3763–3767 (2012). [CrossRef] [PubMed]
  20. D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006). [CrossRef]
  21. C.-C. Yang and W.-C. Chen, “The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing,” J. Mater. Chem.12(4), 1138–1141 (2002). [CrossRef]
  22. Handbook of Optics (McGraw-Hill, 1994).
  23. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).
  24. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photon. Technol. Lett.22(15), 1156–1158 (2010). [CrossRef]
  25. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007). [CrossRef] [PubMed]
  26. J.-M. Liu, Photonic Devices (Cambridge University, 2009).
  27. Y. Fujii, S. Yoshida, S. Misawa, S. Maekawa, and T. Sakudo, “Nonlinear optical susceptibilities of AlN film,” Appl. Phys. Lett.31(12), 815–816 (1977). [CrossRef]
  28. M. Stegmaier and W. H. P. Pernice, “Broadband directional coupling in aluminum nitride nanophotonic circuits,” Opt. Express21(6), 7304–7315 (2013). [CrossRef] [PubMed]
  29. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  30. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011). [CrossRef] [PubMed]
  31. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett.30(2), 138–140 (2005). [CrossRef] [PubMed]
  32. J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16(1), 53–60 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited