OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26762–26773

Information-rate analysis of a fiber-optic transmission system including 2R signal regenerators

Masayuki Matsumoto  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26762-26773 (2013)
http://dx.doi.org/10.1364/OE.21.026762


View Full Text Article

Enhanced HTML    Acrobat PDF (1534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Performance of a single-channel fiber-optic transmission system in which signal regenerators are periodically inserted is analyzed in terms of information rate (IR) considering channel memory. Limitations in using regenerators in a system having non-zero residual dispersion between the regenerators are discussed. It is shown that a type of signal impairment caused by the interaction between the transmission-fiber dispersion and the regenerator nonlinearity is pattern-dependent and will be mitigated by the use of sequence estimation after detection at the receiver.

© 2013 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 9, 2013
Revised Manuscript: October 20, 2013
Manuscript Accepted: October 21, 2013
Published: October 29, 2013

Citation
Masayuki Matsumoto, "Information-rate analysis of a fiber-optic transmission system including 2R signal regenerators," Opt. Express 21, 26762-26773 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon.1(2), 279–307 (2009). [CrossRef]
  2. D. Marcuse, “Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion,” J. Lightwave Technol.9(3), 356–361 (1991). [CrossRef]
  3. K. Kikuchi, “Enhancement of optical-amplifier noise by nonlinear refractive index and group-velocity dispersion of optical fibers,” IEEE Photon. Technol. Lett.5(2), 221–223 (1993). [CrossRef]
  4. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol.21(11), 2779–2790 (2003). [CrossRef]
  5. M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron.18(2), 738–752 (2012). [CrossRef]
  6. A. Bogoni, W. Xiaoxia, S. R. Nuccio, and A. E. Willner, “640 Gb/s all-optical regenerator based on a periodically poled lithium niobate waveguide,” J. Lightwave Technol.30(12), 1829–1834 (2012). [CrossRef]
  7. J. Kakande, A. Bogris, R. Slavík, F. Parmigiani, D. Sybridis, P. Petropoulos, and D. J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” in 36 th European Conference and Exhibition on Optical Communication (2010), paper PD3.3. [CrossRef]
  8. M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett.30(12), 1458–1460 (2005). [CrossRef] [PubMed]
  9. F. Parmigiani, L. Provost, P. Petropoulos, D. J. Richardson, W. Freude, J. Leuthold, A. D. Ellis, and I. Tomkos, “Progress in multichannel all-optical regeneration based on fiber technology,” IEEE J. Sel. Top. Quantum Electron.18(2), 689–700 (2012). [CrossRef]
  10. P. G. Patki, M. Vasilyev, and T. I. Lakoba, “Multichannel all-optical regeneration,” 2010 IEEE Photonics Society Sum. Top. Meeting Series, paper WC2.2 (2010).
  11. F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. J. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17(6), 1470–1489 (2011). [CrossRef]
  12. J. H. Winters and R. D. Giltin, “Electrical signal processing techniques in long-haul fiber-optic systems,” IEEE Trans. Commun.38(9), 1439–1453 (1990). [CrossRef]
  13. D. Arnold and H.-A. Loeliger, “On the information rate of binary-input channels with memory,” in Proc. Int. Conf. Communications (2001), 2692–2695. [CrossRef]
  14. H. D. Pfister, J. B. Soriaga, and P. H. Siegel, “On the achievable information rates of finite state ISI channels,” Global Telecommunications Conference 2001 (GLOBECOM2001), 5, pp. 2992–2996 (2001). [CrossRef]
  15. I. B. Djordjevic, B. Vasic, M. Ivkovic, and I. Gabitov, “Achievable information rates for high-speed long-haul optical transmission,” J. Lightwave Technol.23(11), 3755–3763 (2005). [CrossRef]
  16. M. Franceschini, G. Bongiorni, G. Ferrari, R. Raheli, F. Meli, and A. Castoldi, “Fundamental limits of electronic signal processing in direct-detection optical communications,” J. Lightwave Technol.25(7), 1742–1753 (2007). [CrossRef]
  17. M. Matsumoto and Y. Yahata, “Information rates of PSK-signal transmission in a system including phase-preserving amplitude limiters,” in Nonlinear Photonics Topical Meeting, Technical Digest (CD) (Optical Society of America, 2010), paper NME35. [CrossRef]
  18. T. M. Cover and J. A. Thomas, Elements of Information Theory (John Wiley & Sons, 1991).
  19. B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC, 1998).
  20. A. D. Ellis and J. Zhao, “Channel capacity of non-linear transmission systems,” in Impact of Nonlinearities on Fiber Optic Communications, S. Kumar Ed., pp. 507–538 (Springer, 2011).
  21. K. S. Turitsyn and S. K. Turitsyn, “Nonlinear communication channels with capacity above the linear Shannon limit,” Opt. Lett.37(17), 3600–3602 (2012). [CrossRef] [PubMed]
  22. J. H. Winters, R. D. Gitlin, and S. Kasturia, “Reducing the effects of transmission impairments in digital fiber optic systems,” IEEE Commun. Mag.31(6), 68–76 (1993). [CrossRef]
  23. G. D. Forney., “The Viterbi algorithm,” Proc. IEEE61(3), 268–278 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited