OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26774–26779

Near ultraviolet InGaN/AlGaN-based light-emitting diodes with highly reflective tin-doped indium oxide/Al-based reflectors

Chang-Hoon Choi, Jaecheon Han, Jae-Seong Park, and Tae-Yeon Seong  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26774-26779 (2013)
http://dx.doi.org/10.1364/OE.21.026774


View Full Text Article

Enhanced HTML    Acrobat PDF (1466 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The enhanced light output power of a InGaN/AlGaN-based light-emitting diodes (LEDs) using three different types of highly reflective Sn-doped indium oxide (ITO)/Al-based p-type reflectors, namely, ITO/Al, Cu-doped indium oxide (CIO)/s-ITO(sputtered)/Al, and Ag nano-dots(n-Ag)/CIO/s-ITO/Al, is presented. The ITO/Al-based reflectors exhibit lower reflectance (76 - 84% at 365 nm) than Al only reflector (91.1%). However, unlike Al only n-type contact, the ITO/Al-based contacts to p-GaN show good ohmic characteristics. Near-UV (365 nm) InGaN/AlGaN-based LEDs with ITO/Al, CIO/s-ITO/Al, and n-Ag/CIO/s-ITO/Al reflectors exhibit forward-bias voltages of 3.55, 3.48, and 3.34 V at 20 mA, respectively. The LEDs with the ITO/Al and CIO/s-ITO/Al reflectors exhibit 9.5% and 13.5% higher light output power (at 20 mA), respectively, than the LEDs with the n-Ag/CIO/s-ITO/Al reflector. The improved performance of near UV LEDs is attributed to the high reflectance and low contact resistivity of the ITO/Al-based reflectors, which are better than those of conventional Al-based reflectors.

© 2013 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.4040) Optical devices : Mirrors

ToC Category:
Optical Devices

History
Original Manuscript: September 12, 2013
Revised Manuscript: October 21, 2013
Manuscript Accepted: October 21, 2013
Published: October 29, 2013

Citation
Chang-Hoon Choi, Jaecheon Han, Jae-Seong Park, and Tae-Yeon Seong, "Near ultraviolet InGaN/AlGaN-based light-emitting diodes with highly reflective tin-doped indium oxide/Al-based reflectors," Opt. Express 21, 26774-26779 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26774


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Sun, V. Adivarahan, M. Shatalov, Y. Lee, S. Wu, J. Yang, J. Zhang, and M. A. Khan, “Continuous wave milliwatt power AlGaN light emitting diodes at 280 nm,” Jpn. J. Appl. Phys.43(No. 11A), L1419–L1421 (2004). [CrossRef]
  2. M. Kneissl, Z. Yang, M. Teepe, C. Knollenberg, N. M. Johnson, A. Usikov, and V. Dmitriev, “Ultraviolet InAlGaN light emitting diodes grown on hydride vapor phase epitaxy AlGaN/sapphire templates,” Jpn. J. Appl. Phys.45(5A), 3905–3908 (2006). [CrossRef]
  3. H. Tsuzuki, F. Mori, K. Takeda, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Yoshida, M. Kuwabara, Y. Yamashita, and H. Kan, “Novel UV devices on high-quality AlGaN using grooved underlying layer,” J. Cryst. Growth311(10), 2860–2863 (2009). [CrossRef]
  4. J.-O. Song, D.-S. Leem, J. S. Kwak, O. H. Nam, Y. Park, and T.-Y. Seong, “Low-resistance and highly-reflective Zn-Ni solid solution/Ag ohmic contacts for flip-chip light-emitting diodes,” Appl. Phys. Lett.83(24), 4990–4992 (2003). [CrossRef]
  5. H. Kim, K. H. Baik, J. Cho, J. W. Lee, S. Yoon, H. Kim, S. N. Lee, C. Sone, Y. Park, and T.-Y. Seong, “High-reflectance and thermally stable AgCu alloy p-type reflectors for GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett.19(5), 336–338 (2007). [CrossRef]
  6. J.-O. Song, J.-S. Ha, and T.-Y. Seong, “Ohmic-contact technology for GaN-based light-emitting diodes: role of P-type contact,” IEEE Trans. Electron. Dev.57(1), 42–59 (2010). [CrossRef]
  7. H. W. Jang and J.-L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett.85(24), 5920–5922 (2004). [CrossRef]
  8. I.-C. Chen, Y.-D. Chen, C.-C. Hsieh, C.-H. Kuo, and L.-C. Chang, “Highly reflective Ag/La bilayer ohmic contacts to p-type GaN,” J. Electrochem. Soc.158(3), H285–H288 (2011). [CrossRef]
  9. J.-O. Song, W.-G. Hong, J. S. Kwak, Y. Park, and T.-Y. Seong, “Low-resistance Al-based reflectors for high-power GaN-based flip-chip light-emitting diodes,” Appl. Phys. Lett.86(13), 133503 (2005). [CrossRef]
  10. N. Lobo, H. Rodriguez, A. Knauer, M. Hoppe, S. Einfeldt, P. Vogt, M. Weyers, and M. Kneissl, “Enhancement of light extraction in ultraviolet light-emitting diodes using nanopixel contact design with Al reflector,” Appl. Phys. Lett.96(8), 081109 (2010). [CrossRef]
  11. W. H. Lee, D. J. Chae, D. Y. Kim, and T. G. Kim, “Improved electrical and optical properties of vertical GaN LEDs using fluorine-doped ITO/Al ohmic reflectors,” IEEE J. Quantum Electron.47(10), 1277–1282 (2011). [CrossRef]
  12. K. Takehara, K. Takeda, S. Ito, H. Aoshima, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Indium-tin oxide/Al reflective electrodes for ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys.51, 042101 (2012). [CrossRef]
  13. B. P. Luther, J. M. DeLucca, S. E. Mohney, and R. F. Karlicek., “Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN,” Appl. Phys. Lett.71(26), 3859–3861 (1997). [CrossRef]
  14. D. L. Hibbard, S. P. Jung, C. Wang, D. Ullery, Y. S. Zhao, H. P. Lee, W. So, and H. Liu, “Low resistance high reflectance contacts to p-GaN using oxidized Ni/Au and Al or Ag,” Appl. Phys. Lett.83(2), 311–313 (2003). [CrossRef]
  15. J.-O. Song and T.-Y. Seong, “Highly transparent Ag/SnO2 ohmic contact to p-type GaN for ultraviolet light-emitting diodes,” Appl. Phys. Lett.85(26), 6374–6376 (2004). [CrossRef]
  16. J. H. Son, G. H. Jung, and J.-L. Lee, “Highly reflective Ag-Cu alloy-based ohmic contact on p-type GaN using Ru overlayer,” Opt. Lett.33(24), 2907–2909 (2008). [CrossRef] [PubMed]
  17. T. B. Massalski and H. Okamoto, Binary Alloy Phase Diagram (ASM International, metal parks, Ohio) (1990).
  18. J.-O. Song, S. Kwak, Y. Park, and T.-Y. Seong, “Improvement of the light output of InGaN-based light-emitting diodes using Cu-doped indium oxide/indium tin oxide p-type electrodes,” Appl. Phys. Lett.86(21), 213505 (2005). [CrossRef]
  19. R. T. Tung, “Electron transport at metal-semiconductor interfaces: General theory,” Phys. Rev. B Condens. Matter45(23), 13509–13523 (1992). [CrossRef] [PubMed]
  20. S. K. Lee, C. M. Zettering, M. Ostling, I. Aberg, M. H. Magnusson, K. Deppert, L. E. Wernersson, L. Samuelson, and A. Litwin, “Reduction of the Schottky barrier height on silicon carbide using Au nano-particles,” Solid-State Electron.46(9), 1433–1440 (2002). [CrossRef]
  21. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford 1988), p. 39.
  22. J. I. Sohn, J.-O. Song, D.-S. Leem, S. Lee, and T.-Y. Seong, “Formation of nonalloyed low resistance Ni/Au ohmic contacts to p-type GaN using Au nano-dots,” Electrochem. Solid-State Lett.7(9), G179–G181 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited