OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26786–26796

Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature

Ouri Karni, Amir Capua, Gadi Eisenstein, Vitalii Sichkovskyi, Vitalii Ivanov, and Johann Peter Reithmaier  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26786-26796 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report direct observations of Rabi oscillations and self-induced transparency in a quantum dot optical amplifier operating at room temperature. The experiments make use of pulses whose durations are shorter than the coherence time which are characterized using Cross-Frequency-Resolved Optical Gating. A numerical model which solves the Maxwell and Schrödinger equations and accounts for the inhomogeneously broadened nature of the quantum dot gain medium confirms the experimental results. The model is also used to explain the relationship between the observability of Rabi oscillations, the pulse duration and the homogeneous and inhomogeneous spectral widths of the semiconductor.

© 2013 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7100) Ultrafast optics : Ultrafast measurements
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Quantum Optics

Original Manuscript: September 24, 2013
Revised Manuscript: October 21, 2013
Manuscript Accepted: October 21, 2013
Published: October 29, 2013

Ouri Karni, Amir Capua, Gadi Eisenstein, Vitalii Sichkovskyi, Vitalii Ivanov, and Johann Peter Reithmaier, "Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature," Opt. Express 21, 26786-26796 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Capua, O. Karni, G. Eisenstein, and J. P. Reithmaier, “Electron wavefunction probing in room-temperature semiconductors: direct observation of Rabi oscillations and self-induced transparency,” arXiv:1210.6803, October 2012.
  2. G. Eisenstein, A. Capua, O. Karni, and J. P. Reithmaier, “Highly Nonlinear phenomena and coherent effects in 1550 nm QD lasers and amplifiers,” The 25th International Conference on Indium Phosphide and Related Materials (IPRM) May 2013.
  3. A. Capua, O. Karni, and G. Eisenstein, “A Finite-difference time-domain model for quantum-dot lasers and amplifiers in the Maxwell–Schrödinger framework,” IEEE J. Sel. Top. Quantum Electron.19(5), 1900410 (2013). [CrossRef]
  4. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B65(4), 041308 (2002). [CrossRef]
  5. R. Trebino, Frequency-Resolved Optical Gating: The Measurement Of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
  6. H. Choi, V. M. Gkortsas, L. Dieh, D. Bour, S. Corzine, J. Zhu, G. Hoefler, F. Capasso, F. X. Kartner, and T. B. Norris, “Ultrafast Rabi floopping and coherent pulse propagation in a quantum cascade laser,” Nat. Photonics4(10), 706–710 (2010). [CrossRef]
  7. C. Fürst, A. Leitenstorfer, A. Nutsch, G. Tränkle, and A. Zrenner, “Ultrafast Rabi oscillations of free-carrier transitions in InP,” Phys. Status Solidi, B Basic Res.204(1), 20–22 (1997). [CrossRef]
  8. S. T. Cundiff, A. Knorr, J. Feldmann, S. W. Koch, E. O. Göbel, and H. Nickel, “Rabi flopping in semiconductors,” Phys. Rev. Lett.73(8), 1178–1181 (1994). [CrossRef] [PubMed]
  9. A. Scholzgen, R. Binder, M. E. Donovan, M. Lindberg, K. Wundke, H. M. Gibbs, G. Khitrova, and N. Peyghambarian, “Direct observation of excitonic Rabi oscillations in semiconductors,” Phys. Rev. Lett.82(11), 2346–2349 (1999). [CrossRef]
  10. T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “Rabi oscillations of excitons in single quantum dots,” Phys. Rev. Lett.87(13), 133603 (2001). [CrossRef] [PubMed]
  11. H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett.88(8), 087401 (2002). [CrossRef] [PubMed]
  12. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B66(8), 081306 (2002). [CrossRef]
  13. M. Jutte and W. von der Osten, “Self-induced transparency at bound excitons in CdS,” J. Lumin.83–84, 77–82 (1999). [CrossRef]
  14. S. Schneider, P. Borri, W. Langbein, U. Woggon, J. Förstner, A. Knorr, R. L. Sellin, D. Ouyang, and D. Bimberg, “Self-induced transparency in InGaAs quantum-dot waveguides,” Appl. Phys. Lett.83(18), 3668–3670 (2003). [CrossRef]
  15. J. A. Davis, L. Van Dao, X. Wen, P. Hannaford, V. A. Coleman, H. H. Tan, C. Jagadish, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature,” Appl. Phys. Lett.89(18), 182109 (2006). [CrossRef]
  16. S. Hughes, P. Borri, A. Knorr, F. Romstad, and J. M. Hvam, “Ultrashort pulse-propagation effects in a semiconductor optical amplifier: microscopic theory and experiment,” IEEE J. Sel. Top. Quantum Electron.7(4), 694–702 (2001). [CrossRef]
  17. C. Gilfert, E. Pavelescu, and J. P. Reithmaier, “Influence of the As2/As4 growth modes on the formation of quantum dot-like InAs islands grown on InGaAs/InP (100),” Appl. Phys. Lett.96(19), 191903 (2010). [CrossRef]
  18. C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, “High gain 1.55 μm diode lasers based on InAs quantum dot like active regions,” Appl. Phys. Lett.98(20), 201102 (2011). [CrossRef]
  19. A. Marynski, G. Sek, A. Musial, J. Andrzejewski, J. Misiewicz, C. Gilfert, J. P. Reithmaier, A. Capua, O. Karni, D. Gready, G. Eisenstein, G. Atiya, W. D. Kaplan, and L. Wilde, “Electronic Structure, Morphology and Emission Polarization of Enhanced Symmetry InAs Quantum-Dot-Like Structures Grown on InP Substrates by Molecular Beam Epitaxy,” J. Appl. Phys.114(9), 094306 (2013). [CrossRef]
  20. F. Romstad, P. Borri, W. Langbein, J. Mørk, and J. M. Hvam, “Measurement of pulse amplitude and phase distortion in a semiconductor optical amplifier: from pulse compression to breakup,” IEEE Photon. Technol. Lett.12(12), 1674–1676 (2000). [CrossRef]
  21. S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev.183(2), 457–485 (1969). [CrossRef]
  22. A. J. Zilkie, J. Meier, M. Mojahedi, A. S. Helmy, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, Y. Chi, A. Stintz, K. J. Malloy, P. W. E. Smith, and J. S. Aitchison, “Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 μm,” J. Lightwave Technol.26(11), 1498–1509 (2008). [CrossRef]
  23. O. Karni, A. Capua, G. Eisenstein, D. Franke, J. Kreissl, H. Kuenzel, D. Arsenijević, H. Schmeckebier, M. Stubenrauch, M. Kleinert, D. Bimberg, C. Gilfert, and J. P. Reithmaier, “Nonlinear pulse propagation in a quantum dot laser,” Opt. Express21(5), 5715–5736 (2013). [CrossRef] [PubMed]
  24. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and Noise Sarturation of Wide-Band InAs-InP Quantum Dash Optical Amplifiers: Model and Experiment,” IEEE J. Sel. Top. Quantum Electron.11(5), 1015–1026 (2005). [CrossRef]
  25. L. Allen and J. H. Eberly, “Optical Resonance and Two-Level Atoms” (Dover books, 1987), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited