OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26806–26811

Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers

Binbin Song, Yinping Miao, Wei Lin, Hao Zhang, Jixuan Wu, and Bo Liu  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26806-26811 (2013)
http://dx.doi.org/10.1364/OE.21.026806


View Full Text Article

Enhanced HTML    Acrobat PDF (2081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all-fiber twist sensor based on multimode interferometer (MMI) has been proposed and fabricated by splicing both ends of a section of square no-core fiber (NCF) with a single mode fiber. We have investigated the transmission spectral characteristics of the square fiber under different applied twisting angles. Within a torsion angle range of -360°~360°, the wavelength and transmission sensitivities are 1.28615nm/(rad × m−1) and 0.11863%/ (rad × m−1), respectively. Moreover due to the trivial thermal expansion coefficient of pure silica fiber, the proposed twist sensor has a low temperature sensitivity, which is desirable to solve the temperature cross sensitivity.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Sensors

History
Original Manuscript: July 17, 2013
Revised Manuscript: October 2, 2013
Manuscript Accepted: October 6, 2013
Published: October 30, 2013

Citation
Binbin Song, Yinping Miao, Wei Lin, Hao Zhang, Jixuan Wu, and Bo Liu, "Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers," Opt. Express 21, 26806-26811 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn.35(6), 4503–4510 (1999). [CrossRef]
  2. W. G. Zhang, G. Y. Kai, X. Y. Dong, S. Z. Yuan, and Q. D. Zhao, “Temperature-independent FBG-type torsion sensor based on combinatorial torsion beam,” IEEE Photon. Technol. Lett.14(8), 1154–1156 (2002). [CrossRef]
  3. D. A. Gonzalez, C. Jauregui, A. Quintela, F. J. Madruga, P. Marquez, and J. M. Lopez-Higuera, “Torsion-induced effects on UV long-period fiber gratings,” In Second European Workshop on Optical Fibre Sensors. International Society for Optics and Photonics. (192–195) (2004). [CrossRef]
  4. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol.19(8), 1159–1168 (2001). [CrossRef]
  5. Y. P. Wang, J. P. Chen, and Y. J. Rao, “Torsion characteristics of long period fiber gratings induced by high-frequency laser pulses,” J. Opt. Soc. Am. B22(6), 1167–1172 (2005). [CrossRef]
  6. J. Y. Cho, J. H. Lim, and K. S. Lee, “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photon. Technol. Lett.17(2), 453–455 (2005). [CrossRef]
  7. O. V. Ivanov, “Fabrication of long-period fiber gratings by twisting a standard single-mode fiber,” Opt. Lett.30(24), 3290–3292 (2005). [CrossRef] [PubMed]
  8. O. V. Ivanov, “Propagation and coupling of hybrid modes in twisted fibers,” J. Opt. Soc. Am. A22(4), 716–723 (2005). [CrossRef] [PubMed]
  9. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol.21(5), 1320–1327 (2003). [CrossRef]
  10. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett.21(9), 692–694 (1996). [CrossRef] [PubMed]
  11. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photon. Technol. Lett.18, 2596–2598 (2006). [CrossRef]
  12. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express20(3), 2844–2850 (2012). [CrossRef] [PubMed]
  13. H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett.22(20), 1539–1541 (2010). [CrossRef]
  14. O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt.47(27), 4841–4848 (2008). [CrossRef] [PubMed]
  15. J. M. Estudillo-Ayala, J. Ruiz-Pinales, R. Rojas-Laguna, J. A. Andrade-Lucio, O. G. Ibarra-Manzano, E. Alvarado-Mendez, M. Torres-Cis-neros, B. Ibarra-Escamilla, and E. A. Kuzin, “Analysis of a Sagnac interferometer with low-birefringence twisted fiber,” Opt. Lasers Eng.39(5-6), 635–643 (2003). [CrossRef]
  16. P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett.23(13), 920–922 (2011). [CrossRef]
  17. O. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009). [CrossRef]
  18. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett.32(21), 3074–3076 (2007). [CrossRef] [PubMed]
  19. Y. Gong, T. Zhao, Y. J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express18(15), 15844–15852 (2010). [CrossRef] [PubMed]
  20. Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, “Highly birefringent silica microfiber,” Opt. Lett.35(3), 378–380 (2010). [CrossRef] [PubMed]
  21. J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011). [CrossRef] [PubMed]
  22. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  23. Y. Gong, T. Zhao, Y. J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett.23(11), 679–681 (2011). [CrossRef]
  24. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett.31(3), 317–319 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited