OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26854–26867

Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology

Robert J. Williams, Ria G. Krämer, Stefan Nolte, Michael J. Withford, and M. J. Steel  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26854-26867 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Point-by-point (PbP) inscription of fiber Bragg gratings using femtosecond laser pulses is a versatile technique that is currently experiencing significant research interest for fiber laser and sensing applications. The recent demonstration of apodized gratings using this technique provides a new avenue of investigation into the nature of the refractive index perturbation induced by the PbP modifications, as apodized gratings are sensitive to variation in the average background index along the grating. In this work we compare experimental results for Gaussian- and sinc-apodized PbP gratings to a coupled-mode theory model, demonstrating that the refractive index perturbation induced by the PbP modifications has a negative contribution to the average background index which is small, despite the presence of strong reflective coupling. By employing Fourier analysis to a simplified model of an individual modification, we show that the presence of a densified shell around a central void can produce strong reflective coupling with near-zero change in the average background index. This result has important implications for the experimental implementation of apodized PbP gratings, which are of interest for a range of fiber laser and fiber sensing technologies.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3390) Lasers and laser optics : Laser materials processing
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(230.7408) Optical devices : Wavelength filtering devices
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 13, 2013
Revised Manuscript: October 16, 2013
Manuscript Accepted: October 19, 2013
Published: October 30, 2013

Robert J. Williams, Ria G. Krämer, Stefan Nolte, Michael J. Withford, and M. J. Steel, "Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology," Opt. Express 21, 26854-26867 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004). [CrossRef]
  2. J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: A new avenue to integrated fiber technology,” Laser Photonics Rev.6, 709–723 (2012). [CrossRef]
  3. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating,” Opt. Lett.32, 1486–1488 (2007). [CrossRef] [PubMed]
  4. A. Stefani, M. Stecher, G. E. Town, and O. Bang, “Direct writing of fiber Bragg grating in microstructured polymer optical fiber,” IEEE Photonics Technol. Lett.24, 1148–1150 (2012). [CrossRef]
  5. R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: The role of scattering loss,” Opt. Express20, 13451–13456 (2012). [CrossRef] [PubMed]
  6. J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: Modal properties and transmission spectra,” Opt. Express19, 325–341 (2011). [CrossRef] [PubMed]
  7. R. Goto, R. J. Williams, N. Jovanovic, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Linearly polarized fiber laser using a point-by-point Bragg grating in a single-polarization photonic bandgap fiber,” Opt. Lett.36, 1872–1874 (2011). [CrossRef] [PubMed]
  8. J. Burgmeier, W. Schippers, N. Emde, P. Funken, and W. Schade, “Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines,” Appl. Opt.50, 1868–1872 (2011). [CrossRef] [PubMed]
  9. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express18, 19844–19859 (2010). [CrossRef] [PubMed]
  10. T. Geernaert, K. Kalli, C. Koutsides, M. Komodromos, T. Nasilowski, W. Urbanczyk, J. Wojcik, F. Berghmans, and H. Thienpont, “Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser,” Opt. Lett.35, 1647–1649 (2010). [CrossRef] [PubMed]
  11. C. Koutsides, K. Kalli, D. J. Webb, and L. Zhang, “Characterizing femtosecond laser inscribed Bragg grating spectra,” Opt. Express19, 342–352 (2011). [CrossRef] [PubMed]
  12. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express18, 7714–7723 (2010). [CrossRef] [PubMed]
  13. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques,” Electron. Lett.29, 1668–1669 (1993). [CrossRef]
  14. E. Wikszak, J. Burghoff, M. Will, S. Nolte, A. Tünnermann, and T. Gabler, “Recording of fiber Bragg gratings with femtosecond pulses using a “point by point” technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2004), p. CThM7.
  15. J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings II: Complete vectorial analysis,” Opt. Express20, 21434–21449 (2012). [CrossRef] [PubMed]
  16. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: A new strategy for high-power lasers,” Laser Photonics Rev.2, 429–448 (2008). [CrossRef]
  17. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg gratings sensors,” Laser Photonics Rev.7, 83–108 (2012). [CrossRef]
  18. L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express15, 15555–15565 (2007). [CrossRef] [PubMed]
  19. R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett.36, 2988–2990 (2011). [CrossRef] [PubMed]
  20. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation,” IEEE Photonics Technol. Lett.18, 2266–2268 (2006). [CrossRef]
  21. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express17, 6082–6095 (2009). [CrossRef] [PubMed]
  22. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express15, 18318–18325 (2007). [CrossRef] [PubMed]
  23. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett.41, 176–178 (2005). [CrossRef]
  24. V. Mizrahi and J. E. Sipe, “Optical properties of photosensitive fiber phase gratings,” J. Lightwave Technol.11, 1513–1517 (1993). [CrossRef]
  25. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A11, 1307–1320 (1994). [CrossRef]
  26. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett.31, 1488–1490 (1995). [CrossRef]
  27. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997). [CrossRef]
  28. R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Lightwave Technol.18, 90–101 (2000). [CrossRef]
  29. C. Voigtländer, P. Zeil, J. Thomas, M. Ams, R. J. Williams, M. J. Withford, A. Tünnermann, and S. Nolte, “Fs laser induced apodised Bragg waveguides in fused silica,” Proc. SPIE7925, 79250Y (2011). [CrossRef]
  30. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett.88, 201909 (2006). [CrossRef]
  31. M. L. Åslund, N. Jovanovic, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express16, 14248–14254 (2008). [CrossRef] [PubMed]
  32. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys. A83, 337–340 (2006). [CrossRef]
  33. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71, 882–884 (1997). [CrossRef]
  34. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett.87, 171103 (2005). [CrossRef]
  35. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5, 1591–1595 (2005). [CrossRef] [PubMed]
  36. X. Wang, F. Chen, Q. Yang, H. Liu, H. Bian, J. Si, and X. Hou, “Fabrication of quasi-periodic micro-voids in fused silica by single femtosecond laser pulse,” Appl. Phys. A102, 39–44 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited