OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26876–26887

Linear segmentation algorithm for detecting layer boundary with lidar

Feiyue Mao, Wei Gong, and Timothy Logan  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26876-26887 (2013)
http://dx.doi.org/10.1364/OE.21.026876


View Full Text Article

Enhanced HTML    Acrobat PDF (1137 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

© 2013 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing

History
Original Manuscript: August 23, 2013
Revised Manuscript: October 18, 2013
Manuscript Accepted: October 20, 2013
Published: October 30, 2013

Citation
Feiyue Mao, Wei Gong, and Timothy Logan, "Linear segmentation algorithm for detecting layer boundary with lidar," Opt. Express 21, 26876-26887 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26876


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, 2002).
  2. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004).
  3. M. Feiyue, G. Wei, and M. Yingying, “Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars,” Opt. Lett.37(4), 617–619 (2012). [CrossRef] [PubMed]
  4. M. Vaughan, D. M. Winker, and K. Powell, “CALIOP algorithm theoretical basis document, part 2: Feature detection and layer properties algorithms,” (NASA Langley Research Center, Hampton, Virginia, USA, 2005).
  5. J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. B. Ckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in laser remote sensing, (Selected Papers of the 20th International Laser Radar Conference, 2001), pp. 155–158.
  6. F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol.49, 343–349 (2013). [CrossRef]
  7. F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2007), 4372~4375. [CrossRef]
  8. S. R. Pal, W. Steinbrecht, and A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt.31(10), 1488–1494 (1992). [CrossRef] [PubMed]
  9. D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res.34(1-4), 117–133 (1994). [CrossRef]
  10. Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol.40(10), 1665–1682 (2001). [CrossRef]
  11. F. Mao, W. Gong, and C. Li, “Anti-noise algorithm of lidar data retrieval by combining the ensemble Kalman filter and the Fernald method,” Opt. Express21(7), 8286–8297 (2013). [CrossRef] [PubMed]
  12. Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol.24(5), 761–775 (2007). [CrossRef]
  13. J. Gaumet, J. Heinrich, M. Cluzeau, P. Pierrard, and J. Prieur, “Cloud-base height measurements with a single-pulse erbium-glass laser ceilometer,” J. Atmos. Ocean. Technol.15(1), 37–45 (1998). [CrossRef]
  14. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt.34(30), 7019–7031 (1995). [CrossRef] [PubMed]
  15. F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for Mie lidar,” Acta Opt. Sin.30(11), 3097–3102 (2010). [CrossRef]
  16. F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt.50(36), 6591–6598 (2011). [CrossRef] [PubMed]
  17. M. A. Vaughan, K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B. J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill, “Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements,” J. Atmos. Ocean. Technol.26(10), 2034–2050 (2009). [CrossRef]
  18. J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol.25(5), 685–700 (2008). [CrossRef]
  19. W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys.113(1-2), 89 (2011). [CrossRef]
  20. W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun.284(12), 2966–2971 (2011). [CrossRef]
  21. D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. and Geo.10, 112–122 (1973).
  22. E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in (Proceedings 2001 IEEE International Conference on Data Mining, 2001), 289–296. [CrossRef]
  23. S. Burton, R. Ferrare, M. Vaughan, A. Omar, R. Rogers, C. Hostetler, and J. Hair, “Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask,” Atmos. Meas. Tech.6(5), 1397–1412 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited