OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26908–26913

Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing

Peipeng Xu, Kaiyuan Yao, Jiajiu Zheng, Xiaowei Guan, and Yaocheng Shi  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26908-26913 (2013)
http://dx.doi.org/10.1364/OE.21.026908


View Full Text Article

Enhanced HTML    Acrobat PDF (3119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design, fabrication, and the characterization of high-Q slotted 1D photonic crystal (PhC) cavities with parabolic-width stack. Their peculiar geometry enables the location of the resonating mode close to the air-band. The majority of optical field distributes in the slotted low-index area and the light matter interaction with the analytes has been enhanced. Cavities with measured Q-factors ~104 have been demonstrated. The refractive index sensing measurement for NaCl solutions with different concentrations shows a sensitivity around 410. Both the achieved Q-factor and the sensitivity are higher than the one reported recently by using 2D slotted PhC cavities. The total size for the sensing part of the present device is reduced to 16.8 × 2.5 μm2.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 5, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 24, 2013
Published: October 30, 2013

Citation
Peipeng Xu, Kaiyuan Yao, Jiajiu Zheng, Xiaowei Guan, and Yaocheng Shi, "Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing," Opt. Express 21, 26908-26913 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Daw and J. Finkelstein, “Lab on a chip,” Nature442(7101), 367 (2006). [CrossRef]
  2. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  3. M. G. Scullion, T. F. Krauss, and A. Di Falco, “Slotted photonic crystal sensors,” Sensors (Basel)13(3), 3675–3710 (2013). [CrossRef] [PubMed]
  4. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  6. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol.16(4), 583–592 (1998). [CrossRef]
  7. K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express20(24), 27039–27044 (2012). [CrossRef] [PubMed]
  8. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  9. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94(6), 063503 (2009). [CrossRef]
  10. J. Jágerská, H. Zhang, Z. Diao, N. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett.35(15), 2523–2525 (2010). [CrossRef] [PubMed]
  11. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011). [CrossRef] [PubMed]
  12. S. H. Mirsadeghi, E. Schelew, and J. F. Young, “Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting,” Appl. Phys. Lett.102(13), 131115 (2013). [CrossRef]
  13. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express16(15), 11095–11102 (2008). [CrossRef] [PubMed]
  14. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010). [CrossRef] [PubMed]
  15. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009). [CrossRef]
  16. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16(23), 19136–19145 (2008). [CrossRef] [PubMed]
  17. Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010). [CrossRef]
  18. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010). [CrossRef] [PubMed]
  19. Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011). [CrossRef] [PubMed]
  20. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010). [CrossRef]
  21. D. R. Lyde, ed., Handbook of Chemistry and Physics (CRC Press, 1997–1998).
  22. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am.64(8), 1107–1110 (1974). [CrossRef]
  23. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited