OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26929–26935

Impact of cavity spectrum on span in microresonator frequency combs

Ivan S. Grudinin, Lukas Baumgartel, and Nan Yu  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26929-26935 (2013)
http://dx.doi.org/10.1364/OE.21.026929


View Full Text Article

Enhanced HTML    Acrobat PDF (1140 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally study the factors that limit the span in frequency combs derived from the crystalline whispering gallery mode resonators. We observe that cavity dispersion is the key property that governs the parameters of the combs resulting from cascaded four wave mixing process. Two different regimes of comb generation are observed depending on the precise cavity dispersion behavior at the pump wavelength. In addition, the comb generation efficiency is found to be affected by the crossing of modes of different families. The influence of Raman lasing and its dependence on temperature is discussed.

© 2013 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.5750) Optical devices : Resonators
(260.1180) Physical optics : Crystal optics
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 19, 2013
Revised Manuscript: October 23, 2013
Manuscript Accepted: October 24, 2013
Published: October 30, 2013

Citation
Ivan S. Grudinin, Lukas Baumgartel, and Nan Yu, "Impact of cavity spectrum on span in microresonator frequency combs," Opt. Express 21, 26929-26935 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26929


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007). [CrossRef] [PubMed]
  2. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.34(7), 878–880 (2009). [CrossRef] [PubMed]
  3. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett.101(9), 093902 (2008). [CrossRef] [PubMed]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  5. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Modelocking in an optical microresonator via soliton formation” arXiv:1211.0733.
  6. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012). [CrossRef]
  7. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833 (2011). [CrossRef]
  8. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett.109(23), 233901 (2012). [CrossRef] [PubMed]
  9. A. B. Matsko, W. Liang, A. A. Savchenkov, and L. Maleki, “Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators,” Opt. Lett.38(4), 525–527 (2013). [CrossRef] [PubMed]
  10. M. R. E. Lamont, Y. Okawachi, and A. L. Gaeta, “Route to stabilized ultrabroadband microresonator-based frequency combs” arXiv:1305.4921. [CrossRef]
  11. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82(3), 033801 (2010). [CrossRef]
  12. Y. K. Chembo and N. Yu, “On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators,” Opt. Lett.35(16), 2696–2698 (2010). [CrossRef] [PubMed]
  13. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett.104(10), 103902 (2010). [CrossRef] [PubMed]
  14. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model,” Opt. Lett.38(1), 37–39 (2013). [CrossRef] [PubMed]
  15. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011). [CrossRef] [PubMed]
  16. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107(6), 063901 (2011). [CrossRef] [PubMed]
  17. O. Pironneau, F. Hecht, A. Le Hyaric, and J. Morice, “FreeFem++,” http://www.freefem.org/
  18. A. A. Savchenkov, I. S. Grudinin, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Morphology-dependent photonic circuit elements,” Opt. Lett.31(9), 1313–1315 (2006). [CrossRef] [PubMed]
  19. I. S. Grudinin and N. Yu, “Finite-element modeling of coupled optical microdisk resonators for displacement sensing,” J. Opt. Soc. Am. B29(11), 3010–3014 (2012). [CrossRef]
  20. M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes” IEEE. J. Sel. Top. Quantum Electron.12(1), 33–39 (2006). [CrossRef]
  21. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37(1), 43–45 (2012). [CrossRef] [PubMed]
  22. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009). [CrossRef]
  23. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett.30(15), 1980–1982 (2005). [CrossRef] [PubMed]
  24. S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency combs,” Opt. Lett.38(11), 1790–1792 (2013). [CrossRef] [PubMed]
  25. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett.93(8), 083904 (2004). [CrossRef] [PubMed]
  26. A. Perakis, E. Sarantopoulou, Y. S. Raptis, and C. Raptis, “Temperature dependence of Raman scattering and anharmonicity study of MgF2,” Phys. Rev. B59(2), 775–782 (1999). [CrossRef]
  27. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked raman laser,” Phys. Rev. Lett.105(14), 143903 (2010). [CrossRef] [PubMed]
  28. I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20(6), 6604–6609 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited