OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26936–26941

A laterally-coupled distributed feedback laser with equivalent quarter-wave phase shift

Jingsi Li and Julian Cheng  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 26936-26941 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first laterally-coupled distributed feedback (LC-DFB) laser with a quarter-wave equivalent phase shift (EPS) realized by interference lithography (IL) and conventional photolithography. A specially designed sampled grating is fabricated on both sidewalls of a ridge waveguide to provide a quarter-wave EPS at the center of the cavity. The resulting laser exhibits stable single-mode lasing operation over a wide range of injection currents, with a side mode suppression ratio (SMSR) of 41.1 dB. This provides a practical, low-cost method to fabricate quarter-wave phase shifted DFB lasers with high performance without any epitaxial regrowth or the use of electron-beam lithography, thereby simplifying the fabrication of DFB lasers with stable and precise wavelengths, as single devices or as arrays in photonic integrated circuits.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 24, 2013
Revised Manuscript: October 19, 2013
Manuscript Accepted: October 21, 2013
Published: October 30, 2013

Jingsi Li and Julian Cheng, "A laterally-coupled distributed feedback laser with equivalent quarter-wave phase shift," Opt. Express 21, 26936-26941 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Li, X. Zhang, and J. Yao, “Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology,” Opt. Express21(17), 19966–19971 (2013). [CrossRef] [PubMed]
  2. L. Xie, J. W. Man, B. J. Wang, Y. Liu, X. Wang, H. Q. Yuan, L. J. Zhao, H. L. Zhu, N. H. Zhu, and W. Wang, “24-GHz directly modulated DFB laser modules for analog applications,” IEEE Photon. Technol. Lett.24(5), 407–409 (2012). [CrossRef]
  3. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, and H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express17(7), 5240–5245 (2009). [CrossRef] [PubMed]
  4. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley, 2012), Chap. 3.
  5. K. Sekartedjo, N. Eda, K. Furuya, Y. Suematsu, F. Koyama, and T. Tanbun-Ek, “1.5 µm phase-shifted DFB lasers for single-mode operation,” Electron. Lett.20(2), 80–81 (1984). [CrossRef]
  6. W. K. Chan, J. Chung, and R. J. Contolini, “Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist,” Appl. Opt.27(8), 1377–1380 (1988). [CrossRef] [PubMed]
  7. Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express15(5), 2348–2353 (2007). [CrossRef] [PubMed]
  8. M. Mohrle, A. Sigmund, R. Steingruber, W. Furst, and A. Suna, “All-active tapered 1.55-µm InGaAsP BH-DFB laser with continuously chirped grating,” IEEE Photon. Technol. Lett.15(3), 365–367 (2003). [CrossRef]
  9. L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, “A distributed feedback ridge waveguide quantum well heterostructure laser,” IEEE Photon. Technol. Lett.3(1), 6–8 (1991). [CrossRef]
  10. J. Li and J. Cheng, “Laterally-coupled distributed feedback laser with first-order gratings by interference lithography,” Electron. Lett.49(12), 764–766 (2013). [CrossRef]
  11. Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, “Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp,” Opt. Lett.29(12), 1333–1335 (2004). [CrossRef] [PubMed]
  12. J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009). [CrossRef]
  13. J. Sun, C. W. Holzwarth, and H. I. Smith, “Phase-shift Bragg grating in silicon using equivalent phase-shift method,” IEEE Photon. Technol. Lett.24(1), 25–27 (2012). [CrossRef]
  14. A. Laakso, M. Dumitrescu, J. Viheriälä, J. Karinen, M. Suominen, and M. Pessa, “Optical modeling of laterally-corrugated ridge-waveguide gratings,” Opt. Quantum Electron.40(11-12), 907–920 (2008). [CrossRef]
  15. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, “Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide,” Phys. Rev. B Condens. Matter49(11), 7408–7417 (1994). [CrossRef] [PubMed]
  16. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 phase shifted DFB laser structures,” IEEE J. Quantum Electron.25(6), 1261–1279 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited