OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 26983–26989

Transverse mode discrimination in long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning

Nicolas Volet, Tomasz Czyszanowski, Jaroslaw Walczak, Lukas Mutter, Benjamin Dwir, Zlatko Micković, Pascal Gallo, Andrei Caliman, Alexei Sirbu, Alexandru Mereuta, Vladimir Iakovlev, and Eli Kapon  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 26983-26989 (2013)
http://dx.doi.org/10.1364/OE.21.026983


View Full Text Article

Enhanced HTML    Acrobat PDF (7246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transverse mode discrimination is demonstrated in long-wavelength wafer-fused vertical-cavity surface-emitting lasers using ring-shaped air gap patterns at the fused interface between the cavity and the top distributed Bragg reflector. A significant number of devices with varying pattern dimensions was investigated by on-wafer mapping, allowing in particular the identification of a design that reproducibly increases the maximal single-mode emitted power by about 30 %. Numerical simulations support these observations and allow specifying optimized ring dimensions for which higher-order transverse modes are localized out of the optical aperture. These simulations predict further enhancement of the single-mode properties of the devices with negligible penalty on threshold current and emitted power.

© 2013 OSA

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3430) Lasers and laser optics : Laser theory
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable
(160.4236) Materials : Nanomaterials
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 30, 2013
Revised Manuscript: October 21, 2013
Manuscript Accepted: October 21, 2013
Published: October 31, 2013

Citation
Nicolas Volet, Tomasz Czyszanowski, Jaroslaw Walczak, Lukas Mutter, Benjamin Dwir, Zlatko Micković, Pascal Gallo, Andrei Caliman, Alexei Sirbu, Alexandru Mereuta, Vladimir Iakovlev, and Eli Kapon, "Transverse mode discrimination in long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning," Opt. Express 21, 26983-26989 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-26983


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Michalzik, ed., VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, 2013).
  2. E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics3, 27–29 (2009). [CrossRef]
  3. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—Gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70 °C,” IEEE Photonics Technol. Lett.19, 121–123 (2007). [CrossRef]
  4. T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Böhm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron.19, 1700913 (2013). [CrossRef]
  5. A. Sirbu, G. Suruceanu, V. Iakovlev, A. Mereuta, Z. Mickovic, A. Caliman, and E. Kapon, “Reliability of 1310 nm wafer fused VCSELs,” IEEE Photonics Technol. Lett.25, 1555–1558 (2013). [CrossRef]
  6. A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: Application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol.26, 014016 (2011). [CrossRef]
  7. T. Czyszanowski, R. P. Sarzala, M. Dems, J. Walczak, M. Wasiak, W. Nakwaski, V. Iakovlev, N. Volet, and E. Kapon, “Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs,” IEEE J. Sel. Top. Quantum Electron.19, 1702010 (2013).
  8. A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C.-A. Berseth, E. Deichsel, and E. Kapon, “1.5 μ m VCSEL structure optimization for high-power and high-temperature operation,” J. Cryst. Growth272, 520–525 (2004). [CrossRef]
  9. A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett.16, 1230–1232 (2004). [CrossRef]
  10. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron.17, 1552–1567 (2011). [CrossRef]
  11. R. P. Sarzala and W. Nakwaski, “Optimization of 1.3 μm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation,” J. Phys. Condens. Matter16, S3121–S3140 (2004). [CrossRef]
  12. M. Dems, R. Kotynski, and K. Panajotov, “Plane wave admittance method—A novel approach for determining the electromagnetic modes in photonic structures,” Opt. Express13, 3196–3207 (2005). [CrossRef] [PubMed]
  13. L. Frasunkiewicz, T. Czyszanowski, M. Wasiak, M. Dems, R. P. Sarzala, W. Nakwaski, and K. Panajotov, “Optimisation of single-mode photonic-crystal results in limited improvement of emitted power and unexpected broad range of tuning,” IEEE J. Lightwave Technol.31, 1360–1366 (2013). [CrossRef]
  14. M. Müller, P. Debernardi, C. Grasse, T. Gründl, and M.-C. Amann, “Tweaking the modal properties of 1.3-μm short-cavity VCSEL—Simulation and experiment,” IEEE Photonics Technol. Lett.25, 140–143 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited