OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27043–27056

Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs

Michael G. Hansen, Ingo Ernsting, Sergey V. Vasilyev, Arnaud Grisard, Eric Lallier, Bruno Gérard, and Stephan Schiller  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27043-27056 (2013)
http://dx.doi.org/10.1364/OE.21.027043


View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a robust and simple method for measurement, stabilization and tuning of the frequency of cw mid-infrared (MIR) lasers, in particular of quantum cascade lasers. The proof of principle is performed with a quantum cascade laser at 5.4 µm, which is upconverted to 1.2 µm by sum-frequency generation in orientation-patterned GaAs with the output of a standard high-power cw 1.5 µm fiber laser. Both the 1.2 µm and the 1.5 µm waves are measured by a standard Er:fiber frequency comb. Frequency measurement at the 100 kHz-level, stabilization to sub-10 kHz level, controlled frequency tuning and long-term stability are demonstrated.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(190.0190) Nonlinear optics : Nonlinear optics
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 23, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: October 7, 2013
Published: October 31, 2013

Citation
Michael G. Hansen, Ingo Ernsting, Sergey V. Vasilyev, Arnaud Grisard, Eric Lallier, Bruno Gérard, and Stephan Schiller, "Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs," Opt. Express 21, 27043-27056 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27043


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89, 445–510 (2003). doi: [CrossRef]
  2. T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the ro-vibrational ground state,” Nat. Phys.6(4), 275–278 (2010), doi:. [CrossRef]
  3. M. Ziskind, C. Daussy, T. Marrel, and C. Chardonnet, “Improved sensitivity in the search for a parity-violating energy difference in the vibrational spectrum of the enantiomers of CHFCIBr,” Eur. Phys. J. D20(2), 219–225 (2002), doi:. [CrossRef]
  4. U. Bressel, A. Borodin, J. Shen, M. Hansen, I. Ernsting, and S. Schiller, “Addressing and manipulation of individual hyperfine states in cold molecular ions and application to HD+ frequency metrology,” Phys. Rev. Lett.108, 183003 (2012), doi:. [CrossRef] [PubMed]
  5. M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, “Tunable carbon monoxide overtone laser sideband system for precision spectroscopy from 2.6 to 4.1 microm,” Opt. Lett.23(1), 58–60 (1998), doi:. [CrossRef] [PubMed]
  6. P. Palm, D. Hanke, W. Urban, and M. Mürtz, “Ultrahigh-resolution spectrometer for the 5-microm wavelength region,” Opt. Lett.26(9), 641–643 (2001), doi:. [CrossRef] [PubMed]
  7. M. A. Gubin, A. N. Kireev, A. V. Konyashchenko, P. G. Kryukov, A. S. Shelkovnikov, A. V. Tausenev, and D. A. Tyurikov, “Femtosecond fiber laser based methane optical clock,” Appl. Phys. B95(4), 661–666 (2009), doi:. [CrossRef]
  8. A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett.30(24), 3320–3322 (2005), doi:. [CrossRef] [PubMed]
  9. F. Bielsa, A. Douillet, T. Valenzuela, J.-P. Karr, and L. Hilico, “Narrow-line phase-locked quantum cascade laser in the 9.2 microm range,” Opt. Lett.32(12), 1641–1643 (2007), doi:. [CrossRef] [PubMed]
  10. U. Bressel, I. Ernsting, and S. Schiller, “5 μm laser source for frequency metrology based on difference frequency generation,” Opt. Lett.37(5), 918–920 (2012), doi:. [CrossRef] [PubMed]
  11. A recent review of MIR frequency combs is found in:A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012), doi:. [CrossRef]
  12. S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mücke, F. N. C. Wong, E. P. Ippen, and F. X. Kärtner, “Demonstration of a HeNe/CH4-based optical molecular clock,” Opt. Lett.30(5), 570–572 (2005), doi:. [CrossRef] [PubMed]
  13. A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37(12), 2232–2234 (2012), doi:. [CrossRef] [PubMed]
  14. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express19(7), 6296–6302 (2011), doi:. [CrossRef] [PubMed]
  15. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett.34(9), 1330–1332 (2009), doi:. [CrossRef] [PubMed]
  16. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett.36(12), 2275–2277 (2011), doi:. [CrossRef] [PubMed]
  17. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29(13), 1542–1544 (2004), doi:. [CrossRef] [PubMed]
  18. S. M. Foreman, D. J. Jones, and J. Ye, “Flexible and rapidly configurable femtosecond pulse generation in the mid-IR,” Opt. Lett.28(5), 370–372 (2003), doi:. [CrossRef] [PubMed]
  19. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett.32(9), 1138–1140 (2007), doi:. [CrossRef] [PubMed]
  20. A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett.33(22), 2671–2673 (2008), doi:. [CrossRef] [PubMed]
  21. E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett.30(23), 3141–3143 (2005), doi:. [CrossRef] [PubMed]
  22. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, and P. De Natale, “Ultra-stable, widely tunable and absolutely linked mid-IR coherent source,” Opt. Express17(12), 9582–9587 (2009), doi:. [CrossRef] [PubMed]
  23. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006), doi:. [CrossRef]
  24. S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, and P. De Natale, “Quantum cascade lasers for high-resolution spectroscopy,” Opt. Eng.49(11), 111122 (2010), doi:. [CrossRef]
  25. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010), doi:. [CrossRef] [PubMed]
  26. D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb,” Opt. Express19(18), 17520–17527 (2011), doi:. [CrossRef] [PubMed]
  27. L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum-cascade laser assessed from its frequency noise spectrum and impact of the current driver,” Appl. Phys. B109(3), 407–414 (2012), doi:. [CrossRef]
  28. M. S. Taubman, T. L. Myers, B. D. Cannon, R. M. Williams, F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Frequency stabilization of quantum-cascade lasers by use of optical cavities,” Opt. Lett.27(24), 2164–2166 (2002), doi:. [CrossRef] [PubMed]
  29. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004), doi:. [CrossRef] [PubMed]
  30. A. A. Mills, D. Gatti, J. Jiang, Ch. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett.37(19), 4083–4085 (2012), doi:. [CrossRef] [PubMed]
  31. R. Krems, W. Stwalley, and B. Friedrich, eds., Cold Molecules: Theory, Experiment, Application (CRC Press, 2009).
  32. J.-P. Karr, F. Bielsa, A. Douillet, J. Pedregosa Gutierrez, V. I. Korobov, and L. Hilico, “Vibrational spectroscopy of H2: hyperfine structure of two-photon transitions,” Phys. Rev. A77(6), 063410 (2008), doi:. [CrossRef]
  33. D. Bakalov, V. I. Korobov, and S. Schiller, “Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy,” J. Phys. At. Mol. Opt. Phys.44(2), 025003 (2011), doi:. [CrossRef]
  34. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett.32(8), 988–990 (2007), doi:. [CrossRef] [PubMed]
  35. O. D. Mücke, O. Kuzucu, F. N. C. Wong, E. P. Ippen, F. X. Kärtner, S. M. Foreman, D. J. Jones, L.-S. Ma, J. L. Hall, and J. Ye, “Experimental implementation of optical clockwork without carrier-envelope phase control,” Opt. Lett.29(23), 2806–2808 (2004), doi:. [CrossRef] [PubMed]
  36. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004), doi:. [CrossRef]
  37. A. Grisard, F. Gutty, E. Lallier, B. Gérard, and J. Jimenez, “Fabrication and applications of orientation-patterned gallium arsenide for mid-infrared generation,” Phys. Status Solidi C9(7), 1651–1654 (2012), doi:. [CrossRef]
  38. A. Grisard, E. Lallier, and B. Gérard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express2(8), 1020–1025 (2012), doi:. [CrossRef]
  39. O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gérard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-microm radiation in orientation- patterned GaAs,” Opt. Lett.27(23), 2091–2093 (2002), doi:. [CrossRef] [PubMed]
  40. S. E. Bisson, T. J. Kulp, O. Levi, J. S. Harris, and M. M. Fejer, “Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs,” Appl. Phys. B85(2-3), 199–206 (2006), doi:. [CrossRef]
  41. S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, A. J. Boyland, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Broadly tunable single-frequency cw mid-infrared source with milliwatt-level output based on difference-frequency generation in orientation-patterned GaAs,” Opt. Lett.33(13), 1413–1415 (2008), doi:. [CrossRef] [PubMed]
  42. G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, “Optical parametric amplification of a distributed-feedback quantum-cascade laser in orientation-patterned GaAs,” Opt. Lett.35(4), 505–507 (2010), doi:. [CrossRef] [PubMed]
  43. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gérard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys.94(10), 6447 (2003), doi:. [CrossRef]
  44. J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B14(10), 2481–2497 (1997), doi:. [CrossRef]
  45. N. Strauß, I. Ernsting, S. Schiller, A. Wicht, P. Huke, and R.-H. Rinkleff, “A simple scheme for precise relative frequency stabilization of lasers,” Appl. Phys. B88(1), 21–28 (2007), doi:. [CrossRef]
  46. NIST, “Wavenumber calibration tables,” http://www.nist.gov/pml/data/wavenum/tables.cfm
  47. R. A. Toth, “Line strengths (900-3600 cm-1), self-broadened linewidths, and frequency shifts (1800-2360 cm-1) of N2O,” Appl. Opt.32(36), 7326–7365 (1993), doi:. [CrossRef] [PubMed]
  48. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 microm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett.21(13), 1000–1002 (1996), doi:. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited