OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27063–27073

Second harmonic generation correlation spectroscopy for single molecule experiments

Jing Liu and Joseph Irudayaraj  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27063-27073 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (13829 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a single molecule detection approach to further extend the detection limit of correlation spectroscopic techniques through the Second Harmonic Generation Correlation Spectroscopy (SHGCS). SHG signals with high signal-to-noise ratio (SNR) were obtained from Barium titanium oxide, BaTiO3 (BTO) nanocrystals (NCs) upon excitation by a femto-second laser fitted to the scanning confocal bench. The fluctuation of SHG signals from BTO NCs in transparent and turbid media was examined and their diffusion time and particle concentration were evaluated by autocorrelation. Proof-of-concept measurements indicate that water-dispersed BTO NCs at different concentrations yield an average diffusion time of 6.43 ± 0.68 ms and the detection limit of SHGCS was found to be at 814 ± 41 fM, approximately 100 folds below the detection limit of fluorescence correlation spectroscopy (FCS). The dynamics of BTO NCs was demonstrated in serum with high SNR and selectivity to show its potential applicability in biomedicine. High SNR and the sub-picomolar detection limit positions SHGCS as an excellent technique for ultralow single particle or single molecule experimentation in a complex medium.

© 2013 OSA

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:

Original Manuscript: July 3, 2012
Revised Manuscript: August 7, 2012
Manuscript Accepted: August 14, 2012
Published: October 31, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Jing Liu and Joseph Irudayaraj, "Second harmonic generation correlation spectroscopy for single molecule experiments," Opt. Express 21, 27063-27073 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Orden and J. Jung, “Fluorescence correlation spectroscopy for probing the kinetics and mechanics of DNA hairbin formation,” Biopolymers89(1), 1–16 (2008). [CrossRef]
  2. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65(2), 251–297 (2002). [CrossRef]
  3. W. Al-Soufi, B. Reija, M. Novo, S. Felekyan, R. Kühnemuth, and C. A. M. Seidel, “Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin,” J. Am. Chem. Soc.127(24), 8775–8784 (2005). [CrossRef] [PubMed]
  4. P. Schwille and E. Haustein, “Fluorescence correlation spectroscopy: an introduction to its concepts and applications,” Experimental Biophysics Group, University of Gottingen.
  5. M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem.71(3), 609–616 (1999). [CrossRef] [PubMed]
  6. K. M. Berland, P. T. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J.68(2), 694–701 (1995). [CrossRef] [PubMed]
  7. P. Schwille, E. L. Elson, and R. Rigler, eds., Fluorescence correlation spectroscopy. Theory and applications (Springer, 2001).
  8. E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct.36(1), 151–169 (2007). [CrossRef] [PubMed]
  9. L. Varghese, R. Sinha, and J. Irudayaraj, “Single molecule kinetic investigations of protein association and dissociation using fluorescence cross-correlation spectroscopy,” Anal. Chim. Acta625, 103–109 (2008). [CrossRef] [PubMed]
  10. J. Chen, S. Nag, P. A. Vidi, and J. Irudayaraj, “Single molecule in vivo analysis of Toll-like receptor 9 and CpG DNA interaction,” PLoS ONE6(4), e17991 (2011). [CrossRef] [PubMed]
  11. D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29(11), 705–708 (1972). [CrossRef]
  12. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers13(1), 29–61 (1974). [CrossRef] [PubMed]
  13. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science299(5607), 682–686 (2003). [CrossRef] [PubMed]
  14. K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt.45(28), 7538–7542 (2006). [CrossRef] [PubMed]
  15. N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy,” Biophys. J.33(3), 435–454 (1981). [CrossRef] [PubMed]
  16. J. Chen and J. Irudayaraj, “Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy,” ACS Nano3(12), 4071–4079 (2009). [CrossRef] [PubMed]
  17. Y. Wang, J. Chen, and J. Irudayaraj, “Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer,” ACS Nano5(12), 9718–9725 (2011). [CrossRef] [PubMed]
  18. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science300(5624), 1434–1436 (2003). [CrossRef] [PubMed]
  19. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  20. R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Dekker, 2003).
  21. A. A. Gulamov, E. A. Ibragimov, V. I. Redkorechev, and T. Usmanov, “Maximum efficiency of generation of the second and third harmonics of neodymium laser radiation,” Sov. J. Quantum Electron.13(7), 844–845 (1983). [CrossRef]
  22. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  23. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med.9(6), 796–801 (2003). [CrossRef] [PubMed]
  24. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  25. J. E. Reeve, H. A. Collins, K. De Mey, M. M. Kohl, K. J. Thorley, O. Paulsen, K. Clays, and H. L. Anderson, “Amphiphilic porphyrins for second harmonic generation imaging,” J. Am. Chem. Soc.131(8), 2758–2759 (2009). [CrossRef] [PubMed]
  26. J. E. Reeve, H. L. Anderson, and K. Clays, “Dyes for biological second harmonic generation imaging,” Phys. Chem. Chem. Phys.12(41), 13484–13498 (2010). [CrossRef] [PubMed]
  27. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes,” Biomaterials31(8), 2272–2277 (2010). [CrossRef] [PubMed]
  28. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express18(11), 11917–11932 (2010). [CrossRef] [PubMed]
  29. P. Pantazis, J. Maloney, D. Wu, and S. E. Fraser, “Second harmonic generating (SHG) nanoprobes for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A.107(33), 14535–14540 (2010). [CrossRef] [PubMed]
  30. M. Geissbuehler, L. Bonacina, V. Shcheslavskiy, N. L. Bocchio, S. Geissbuehler, M. Leutenegger, I. Märki, J. P. Wolf, and T. Lasser, “Nonlinear correlation spectroscopy (NLCS),” Nano Lett.12(3), 1668–1672 (2012). [CrossRef] [PubMed]
  31. A. Aimable, N. Jongen, A. Testino, M. Donnet, J. Lemaitre, H. Hofmann, and P. Bowen, “Precipitation of nanosized and nanostructured powders: process intensification using SFTR, applied to BaTiO3, CaCO3 and ZnO,” Chem. Eng. Technol.34, 344–352 (2011). [CrossRef]
  32. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett.66(23), 2980–2983 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited