OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27093–27101

Shaping the evanescent field of optical nanofibers for cold atom trapping

C.F. Phelan, T. Hennessy, and Th. Busch  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27093-27101 (2013)
http://dx.doi.org/10.1364/OE.21.027093


View Full Text Article

Enhanced HTML    Acrobat PDF (1493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate trapping geometries for cold, neutral atoms that can be created in the evanescent field of a tapered optical fibre by combining the fundamental mode with one of the next lowest possible modes, namely the HE21 mode. Counter propagating red-detuned HE21 modes are combined with a blue-detuned HE11 fundamental mode to form a potential in the shape of four intertwined spirals. By changing the polarization from circular to linear in each of the two counter-propagating HE21 modes simultaneously the 4-helix configuration can be transformed into a lattice configuration. The modification to the 4-helix configuration due to unwanted excitation of the the TE01 and TM01 modes is also discussed.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(350.5500) Other areas of optics : Propagation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 13, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 23, 2013
Published: October 31, 2013

Citation
C.F. Phelan, T. Hennessy, and Th. Busch, "Shaping the evanescent field of optical nanofibers for cold atom trapping," Opt. Express 21, 27093-27101 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27093


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low loss wave guiding,” Nature426, 816 (2003). [CrossRef] [PubMed]
  2. J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy, and S. Nic Chormaic, “Heat-and-pull rig for fiber taper fabrication,” Rev. Sci. Instrumm.77, 083105 (2006). [CrossRef]
  3. A. Yariv, Optical electronics, 3rd ed. (CBS College, New York1985), chap. 3.
  4. M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical traps,” Rev. Sci. Instrum.80, 53102 (2009). [CrossRef]
  5. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express15, 5431–5438 (2007). [CrossRef] [PubMed]
  6. Yu. B. Ovichnikov, S. V. Shul’ga, and V. I. Balykin, “An atomic trap based on evanescent light waves,” J. Phys. B24, 3173 (1991). [CrossRef]
  7. F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a sub wavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004). [CrossRef]
  8. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010). [CrossRef] [PubMed]
  9. F. Le Kien, V. I. Balykin, and K. Hakuta, “State insensitive trapping and guiding of cesium atoms using a two-color evanescent field around a subwavelength-diameter fiber,” J. Phys. Soc. Japan74, 910–917 (2005). [CrossRef]
  10. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacröute, M. Potoschnig, T. Thiele, N.P. Stern, and H.J. Kimble, “Demonstration of a state insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012). [CrossRef]
  11. C. Lacröute, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, and H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New J. Phys.14, 023056 (2012). [CrossRef]
  12. G. Sagué, A. Baade, and A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultra thin optical fibers,” New J. Phys.10, 113008 (2008). [CrossRef]
  13. T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A85, 053418 (2012). [CrossRef]
  14. A. V. Masalov and V. G. Minogin, “Pumping of higher-modes of an optical nano fiber by laser excited atoms,” Laser Phys. Lett10, 075203 (2013). [CrossRef]
  15. A. Yu. Okulov, “Cold matter trapping via slowly rotating helical potential,” Phys. Lett. A376, 650–655 (2012). [CrossRef]
  16. A. Yu. Okulov, “Superfluid rotation sensor with helical laser trap,” J Low Temp Phys171, 397–407 (2013) [CrossRef]
  17. D. Reitz and A. Rauschenbeutel, “Nanofiber-based double-helix dipole trap for cold neutral atoms,” Opt. Commun.285, 4705–4708 (2012). [CrossRef]
  18. A. Petcu-Colan, M. C. Frawley, and S. Nic Chormaic, “Tapered Few-Mode Fibers: Mode Evolution during Fabrication and Adiabaticity,” JNOPM20, 293–307 (2011). [CrossRef]
  19. M. C. Frawley, A. Petcu-Colan, V. Giang Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun.285, 4648 (2012). [CrossRef]
  20. S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express21(15), 18325–18335 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited