OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27111–27118

Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification

Jiangbing Du and Zuyuan He  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27111-27118 (2013)
http://dx.doi.org/10.1364/OE.21.027111


View Full Text Article

Enhanced HTML    Acrobat PDF (1961 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, highly sensitive measurements of strain and temperature have been demonstrated using a fiber Bragg grating (FBG) sensor with significantly enhance sensitivity by all-optical signal processing. The sensitivity enhancement is achieved by degenerated Four Wave Mixing (FWM) for frequency chirp magnification (FCM), which can be used for magnifying the wavelength drift of the FBG sensor induced by strain and temperature change. Highly sensitive measurements of static strain and temperature have been experimentally demonstrated with strain sensitivity of 5.36 pm/με and temperature sensitivity of 54.09 pm/°C. The sensitivity has been enhanced by a factor of five based on a 4-order FWM in a highly nonlinear fiber (HNLF).

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Sensors

History
Original Manuscript: June 24, 2013
Revised Manuscript: August 16, 2013
Manuscript Accepted: September 4, 2013
Published: November 1, 2013

Citation
Jiangbing Du and Zuyuan He, "Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification," Opt. Express 21, 27111-27118 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27111


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators82(1-3), 40–61 (2000). [CrossRef]
  2. M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring - Present status and applications,” Sens. Actuators A Phys.147(1), 150–164 (2008). [CrossRef]
  3. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overviews,” J. Lightwave Technol.15(8), 1263–1276 (1997). [CrossRef]
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Woo, C. G. Askins, M. A. Putnum, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  5. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Temperature Discrimination,” IEEE Photon. Technol. Lett.8(9), 1223–1225 (1996). [CrossRef]
  6. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol.9(2), 57–79 (2003). [CrossRef]
  7. B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, “Simultaneous strain and temperature measurement using a single fiber Bragg grating,” Electron. Lett.36(12), 1018–1019 (2000). [CrossRef]
  8. B. O. Guan, H. W. Tam, X. M. Tao, and X. Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett.12(6), 675–677 (2000). [CrossRef]
  9. Z. He, Q. Liu, and T. Tokunaga, “Realization of nano-strain-resolution fiber optic static strain sensor for geoscience applications,” CLEO, 2012, CM4B.
  10. Q. Liu, T. Tokunaga, and Z. He, “Realization of nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers,” Opt. Express19(21), 20214–20223 (2011). [CrossRef] [PubMed]
  11. Q. Liu, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett.37(3), 434–436 (2012). [CrossRef] [PubMed]
  12. N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express21(9), 11141–11149 (2013). [CrossRef] [PubMed]
  13. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Opt. Lett.30(14), 1785–1787 (2005). [CrossRef] [PubMed]
  14. A. Cusano, D. Paladino, and A. Iadicicco, “Microstructured Fiber Bragg Gratings,” J. Lightwave Technol.27(11), 1663–1697 (2009). [CrossRef]
  15. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001). [CrossRef]
  16. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express15(14), 8844–8850 (2007). [CrossRef] [PubMed]
  17. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express19(19), 18452–18457 (2011). [CrossRef] [PubMed]
  18. F. Gu, H. Yu, W. Fang, and L. Tong, “Nanoimprinted polymer micro/nanofiber Bragg gratings for high-sensitive strain sensing,” IEEE Photon. Technol. Lett.25(1), 22–24 (2013). [CrossRef]
  19. B. P.-P. Kuo and S. Radic, “Fast wideband source tuning by extra-cavity parametric process,” Opt. Express18(19), 19930–19940 (2010). [CrossRef] [PubMed]
  20. J. Kakande, R. Slavik, F. Parmigiani, P. Petropoulos, and D. Richardson, “Overcoming Electronic Limits to Optical Phase Measurements with an Optical Phase-only Amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5C.9.
  21. Y. Gao, Y. Xie, and S. He, “Reducing the driving voltage of a phase modulator with cascaded four-wave-mixing processes,” J. Opt. Soc. Am. B27(11), 2360–2364 (2010). [CrossRef]
  22. G. W. Lu and T. Miyazaki, “Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gb/s RZDQPSK to 160-Gb/s RZ-DPSK,” Opt. Express17(16), 13346–13353 (2009). [CrossRef] [PubMed]
  23. K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Phase-conjugate pump dithering for high-quality idler generation in a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.15(1), 33–35 (2003). [CrossRef]
  24. O. Frazão, R. Morais, J. M. Baptista, and J. L. Santos, “Fiber ring laser sensor for strain-temperature discrimination based on four-wave mixing effect,” Opt. Eng.46(1), 010502 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited