OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27119–27126

Polarization delivery in heterodyne interferometry

E. Massa, G. Mana, J. Krempel, and M. Jentschel  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27119-27126 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optically heterodyned laser interferometry, as applied to measuring linear displacements, requires different optical frequencies to be encoded onto unique polarization states. To eliminate non-linear contributions to the interferometer signal, the frequency difference must be introduced after beam splitting and the interfering beams must be recombined via spatially separated paths. The polarization jitter of the frequency-shifted beams still originates a noise in the beat-signal phase. A formula is given expressing the noise amplitude in terms of the illuminating beam’s extinction ratio.

© 2013 OSA

OCIS Codes
(040.2840) Detectors : Heterodyne
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 2, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: September 29, 2013
Published: November 1, 2013

E. Massa, G. Mana, J. Krempel, and M. Jentschel, "Polarization delivery in heterodyne interferometry," Opt. Express 21, 27119-27126 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K.-N. Joo, J. D. Ellis, J. W. Spronck, P. J. M. van Kan, and R. H. M. Schmidt, “Simple heterodyne laser interferometer with subnanometer periodic errors,” Opt. Lett.34, 386–388 (2009). [CrossRef] [PubMed]
  2. K.-N. Joo, J. D. Ellis, E. S. Buice, J. W. Spronck, and R. H. M. Schmidt, “High resolution heterodyne interferometer without detectable periodic nonlinearity,” Opt. Express18, 1159–1165 (2010). [CrossRef] [PubMed]
  3. M. Pisani, A. Yacoot, P. Balling, N. Bancone, C. Birlikseven, M. Çelik, J. Fluegge, R. Hamid, P. Koechert, P. Kren, U. Kuetgens, A. Lassila, G. B. Picotto, E. Sahin, J. Seppä, M. Tedaldi, and C. Weichert, “Comparison of the performance of the next generation of optical interferometers,” Metrologia49, 155–167 (2012). [CrossRef]
  4. C. Weichert, P. Koechert, R. Koening, J. Fluegge, B. Andreas, U. Kuetgens, and A. Yacoot, “A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm,” Meas. Sci. Technol.23, 094005 (2012). [CrossRef]
  5. A. Bergamin, G. Cavagnero, and G. Mana, “Phase holonomy in optical interferometry,” J. Mod. Opt.39, 2053–2074 (1992). [CrossRef]
  6. C. M. Wu, J. Lawall, and R. D. Deslattes, “Heterodyne interferometer with subatomic periodic nonlinearity,” Appl. Opt.38, 4089–4094 (1999). [CrossRef]
  7. J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy,” Rev. Sci. Instrum.71, 2669–2676 (2000). [CrossRef]
  8. T. L. Schmitz and J. F. Beckwith, “Acousto-optic displacement-measuring interferometer: a new heterodyne interferometer with Ångstrom-level periodic error,” J. Mod. Opt.49, 2105–2114 (2002). [CrossRef]
  9. J. Krempel, A new spectrometer to measure the molar Planck constant (Ludwig-Maximilians Universität München, Fakultät für Physik, 2011).
  10. G. Cavagnero, G. Mana, and E. Massa, “Effect of recycled light in two-beam interferometry,” Rev. Sci. Instrum.76, 053106 (2005). [CrossRef]
  11. C. Weichert, J. Flügge, R. Köning, H. Bosse, and R. Tutsch, “Aspects of design and the characterization of a high resolution heterodyne displacement interferometer,” in: Fringe 2009, 6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (SpringerBerlin Heidelberg, 2009) 263–268.
  12. S. Cosijns, Displacement laser interferometry with sub-nanometer uncertainty (Technische Universiteit Eindhoven, 2004).
  13. S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. A44, 247–262 (1956); reprinted in: Collected Works of S. Pancharatnam, G. W. Series ED. (Oxford University, 1975)
  14. M. V. Berry, “Interpreting the anholonomy of coiled light,” Nature326, 277–278 (1987). [CrossRef]
  15. T. van Dijk, H. F. Schouten, W. Ubachs, and T. D. Visser, “The Pancharatnam-Berry phase for non-cyclic polarization changes,” Opt. Express18, 10796–10804 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited