OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27142–27154

Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics

Chen Wang and Na Ji  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27142-27154 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Inherent aberrations of gradient index (GRIN) lenses used in fluorescence endomicroscopes deteriorate imaging performance. Using adaptive optics, we characterized and corrected the on-axis and off-axis aberrations of a GRIN lens with NA 0.8 at multiple focal planes. We demonstrated a rotational-transformation-based correction procedure, which enlarged the imaging area with diffraction-limited resolution with only two aberration measurements. 204.8 × 204.8 µm2 images of fluorescent beads and brain slices before and after AO corrections were obtained, with evident improvements in both image sharpness and brightness after AO correction. These results show great promises of applying adaptive optical two-photon fluorescence endomicroscope to three-dimensional (3D) imaging.

© 2013 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.2760) Imaging systems : Gradient-index lenses
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Imaging Systems

Original Manuscript: July 29, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: October 13, 2013
Published: November 1, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Chen Wang and Na Ji, "Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics," Opt. Express 21, 27142-27154 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
  2. D. B. Murphy and M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2012).
  3. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003). [CrossRef] [PubMed]
  4. M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt.14(1), 010508 (2009). [CrossRef] [PubMed]
  5. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  6. C. Wang, L. Qiao, F. He, Y. Cheng, and Z. Xu, “Extension of imaging depth in two-photon fluorescence microscopy using a long-wavelength high-pulse-energy femtosecond laser source,” J. Microsc.243(2), 179–183 (2011). [CrossRef] [PubMed]
  7. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013). [CrossRef]
  8. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics (Springer-Verlag, 2002).
  9. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003). [CrossRef] [PubMed]
  10. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” J. Neurophysiol.91(4), 1908–1912 (2004). [CrossRef] [PubMed]
  11. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004). [CrossRef] [PubMed]
  12. P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt.13(1), 010501 (2008). [CrossRef] [PubMed]
  13. R. P. J. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med.17(2), 223–228 (2011). [CrossRef] [PubMed]
  14. T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt.17(2), 021106 (2012). [CrossRef] [PubMed]
  15. D. M. Huland, C. M. Brown, S. S. Howard, D. G. Ouzounov, I. Pavlova, K. Wang, D. R. Rivera, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems,” Biomed. Opt. Express3(5), 1077–1085 (2012). [CrossRef] [PubMed]
  16. C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzounov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17(4), 040505 (2012). [CrossRef] [PubMed]
  17. W. M. Lee and S. H. Yun, “Adaptive aberration correction of GRIN lenses for confocal endomicroscopy,” Opt. Lett.36(23), 4608–4610 (2011). [CrossRef] [PubMed]
  18. F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, “Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics,” PLoS ONE6(7), e22321 (2011). [CrossRef] [PubMed]
  19. C. Wang and N. Ji, “Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy,” Opt. Lett.37(11), 2001–2003 (2012). [CrossRef] [PubMed]
  20. H. Alencar, U. Mahmood, Y. Kawano, T. Hirata, and R. Weissleder, “Novel multiwavelength microscopic scanner for mouse imaging,” Neoplasia7(11), 977–983 (2005). [CrossRef] [PubMed]
  21. R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009). [CrossRef] [PubMed]
  22. GRINTECH, GmbH, “High NA for 2-photon microscopy,” http://www.grintech.de/grin-lens-systems-for-medical-applications.html?file=tl_files/content/downloads/GRIN_High-NA_Objective-2_Photon_Microscopy . pdf.
  23. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  24. N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A.109(1), 22–27 (2012). [CrossRef] [PubMed]
  25. T. Sakamoto, “Estimation of the fourth-order index coefficient of GRIN-rod lenses,” Appl. Opt.25(15), 2613–2619 (1986). [CrossRef] [PubMed]
  26. C. Grienberger and A. Konnerth, “Imaging calcium in neurons,” Neuron73(5), 862–885 (2012). [CrossRef] [PubMed]
  27. P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive opticsfor spherical aberration correction and motionless focusing,” J. Microsc-Oxford237(2), 136–147 (2010). [CrossRef]
  28. Olympus, “Microprobe objectives,” http://www.olympusamerica.com/seg_section/seg_microprobe_objectives.asp .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited