OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27155–27168

Frequency stabilized coherent Brillouin random fiber laser: theory and experiments

Meng Pang, Xiaoyi Bao, Liang Chen, Zengguang Qin, Yang Lu, and Ping Lu  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27155-27168 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coherent random fiber laser based on stimulated Brillouin scattering as gain and Rayleigh scattering as distributed feedback mirror was constructed. Its frequency is stabilized by a high finesse narrow-band Fabry-Perot interferometer (FPI) to select lasing frequency within the gain bandwidth. The light confinement within single-mode fiber enhances largely the random lasing directionality, which enables a high-quality coherent random lasing in the weak scattering region by using a milliwatt continuous-wave pump source. The FPI in the laser configuration acts as a frequency selection on the Rayleigh feedback light, and thus the random lasing frequency was locked at one of its transmission peaks giving a relative frequency fluctuation of ~2.5 × 10−11 at 100 s. The measured frequency jitter is within ~~ ± 20 kHz over 3 hours, 3 dB linewidth is ~50 Hz and frequency noise is ~20 mHz/Hz1/2 at 10 kHz.

© 2013 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 7, 2013
Revised Manuscript: October 14, 2013
Manuscript Accepted: October 26, 2013
Published: November 1, 2013

Meng Pang, Xiaoyi Bao, Liang Chen, Zengguang Qin, Yang Lu, and Ping Lu, "Frequency stabilized coherent Brillouin random fiber laser: theory and experiments," Opt. Express 21, 27155-27168 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, “A laser with a nonresonant feedback,” IEEE J. Quantum Electron.2(9), 442–446 (1966). [CrossRef]
  2. V. S. Letokhov, “Stimulated emission of an ensemble of scattering particles with negative absorption,” JETP Lett.5, 212–215 (1967).
  3. H. Cao, “Random lasers: development, features and applications,” Opt. Photonics News16(1), 24–29 (2005). [CrossRef]
  4. H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003). [CrossRef]
  5. H. Cao, “Review on latest development in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005). [CrossRef]
  6. R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universal properties of random lasers,” IEEE J. Sel. Top. Quantum Electron.9(1), 120–123 (2003). [CrossRef]
  7. S. Gottardo, O. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett.93(26), 263901 (2004). [CrossRef]
  8. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994). [CrossRef]
  9. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999). [CrossRef]
  10. G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A65(1), 013807 (2002). [CrossRef]
  11. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett.92(20), 201112 (2008). [CrossRef]
  12. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett.85(7), 1289–1291 (2004). [CrossRef]
  13. C. J. S. Matos, L. S. Meneze, A. M. Brito-Silva, M. A. M. Gamez, A. S. L. Gomes, and C. B. Araujo, “Random fiber laser,” Phys. Rev. Lett.99, 153903 (2007). [CrossRef]
  14. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010). [CrossRef]
  15. A. A. Fotiadi, “An incoherent fibre laser,” Nat. Photonics4(4), 204–205 (2010). [CrossRef]
  16. S. V. Smirnov and D. V. Churkin, “Modeling of spectral and statistical properties of a random distributed feedback fiber laser,” Opt. Express21(18), 21236–21241 (2013). [CrossRef]
  17. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012). [CrossRef]
  18. S. Sugavanam, N. Tarasov, X. Shu, and D. V. Churkin, “Narrow-band generation in random distributed feedback fiber laser,” Opt. Express21(14), 16466–16472 (2013). [CrossRef]
  19. M. Gagne and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express17(21), 19067–19074 (2009). [CrossRef]
  20. N. Lizaraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Mendez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express17(2), 395–404 (2009). [CrossRef]
  21. Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and Q. Zhang, “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett.109(25), 253901 (2012). [CrossRef]
  22. M. Pang, S. Xie, X. Bao, Y. Da-Peng Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012). [CrossRef]
  23. M. Pang, X. Bao, and L. Chen, “Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser,” Opt. Lett.38(11), 1866–1868 (2013). [CrossRef]
  24. R. W. Boyd and K. Rzazewski, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42(9), 5514–5521 (1990). [CrossRef]
  25. R. W. Boyd, Nonlinear Optics (Academic, 2010).
  26. A. Yeniay, J. M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol.20(8), 1425–1432 (2002). [CrossRef]
  27. A. H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol.2(2), 76–82 (1984). [CrossRef]
  28. S. Xie, M. Pang, X. Bao, and L. Chen, “Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing,” Opt. Express20(6), 6385–6399 (2012). [CrossRef]
  29. G. A. Ball and W. W. Morey, “Continuously tunable single-mode erbium fiber laser,” Opt. Lett.17(6), 420–422 (1992). [CrossRef]
  30. M. Li, S. Li, and D. A. Nolan, “Nonlinear fibers for signal processing using optical Kerr effects,” J. Lightwave Technol.23(11), 3606–3614 (2005). [CrossRef]
  31. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, 1998).
  32. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol.22(1), 57–64 (2004). [CrossRef]
  33. G. A. Cranch and G. A. Miller, “Fundamental frequency noise properties of extended cavity erbium fiber lasers,” Opt. Lett.36(6), 906–908 (2011). [CrossRef]
  34. S. Foster, A. Tikhomirov, and M. Milnes, “Fundamental thermal noise in distributed feedback fiber lasers,” IEEE J. Quantum Electron.5(5), 378–384 (2007). [CrossRef]
  35. S. Foster, G. A. Cranch, and A. Tikhomirov, “Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers,” Phys. Rev. A79(5), 053802 (2009). [CrossRef]
  36. D. W. Allan, “Time and frequency (time-domain) characterization, estimation and prediction of precision clocks and oscillators,” IEEE Trans. Ultr. Ferr. Contr.34(6), 647–654 (1987). [CrossRef]
  37. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics6(10), 687–692 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited