OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27197–27208

Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition

Izabela Spaleniak, Nemanja Jovanovic, Simon Gross, Michael J. Ireland, Jon S. Lawrence, and Michael J. Withford  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27197-27208 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There are numerous advantages to exploiting diffraction-limited instrumentation at astronomical observatories, which include smaller footprints, less mechanical and thermal instabilities and high levels of performance. To realize such instrumentation it is imperative to convert the atmospheric seeing-limited signal that is captured by the telescope into a diffraction-limited signal. This process can be achieved photonically by using a mode reformatting device known as a photonic lantern that performs a multimode to single-mode transition. With the aim of developing an optimized integrated photonic lantern, we undertook a systematic parameter scan of devices fabricated by the femtosecond laser direct-write technique. The devices were designed for operation around 1.55 μm. The devices showed (coupling and transition) losses of less than 5% for F/# ≥ 12 injection and the total device throughput (including substrate absorption) as high as 75-80%. Such devices show great promise for future use in astronomy.

© 2013 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Integrated Optics

Original Manuscript: August 28, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 26, 2013
Published: November 1, 2013

Izabela Spaleniak, Nemanja Jovanovic, Simon Gross, Michael J. Ireland, Jon S. Lawrence, and Michael J. Withford, "Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition," Opt. Express 21, 27197-27208 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express17(3), 1880–1884 (2009). [CrossRef] [PubMed]
  2. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc.380(2), 839–847 (2007). [CrossRef]
  3. J.-B. Le Bouquin, J.-P. Berger, B. Lazareff, G. Zins, P. Haguenauer, L. Jocou, P. Kern, R. Millan-Gabet, W. Traub, O. Absil, J.-C. Augereau, M. Benisty, N. Blind, X. Bonfils, P. Bourget, A. Delboulbe, P. Feautrier, M. Germain, P. Gitton, D. Gillier, M. Kiekebusch, J. Kluska, J. Knudstrup, P. Labeye, J.-L. Lizon, J.-L. Monin, Y. Magnard, F. Malbet, D. Maurel, F. Ménard, M. Micallef, L. Michaud, G. Montagnier, S. Morel, T. Moulin, K. Perraut, D. Popovic, P. Rabou, S. Rochat, C. Rojas, F. Roussel, A. Roux, E. Stadler, S. Stefl, E. Tatulli, and N. Ventura, “PIONIER: a 4-telescope visitor instrument at VLTI,” Astron. Astrophys.535, A67 (2011).
  4. N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc.427(1), 806–815 (2012). [CrossRef]
  5. N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express20(3), 2062–2072 (2012). [CrossRef] [PubMed]
  6. N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys.544, L1 (2012).
  7. A. Ghasempour, J. Kelly, M. W. Muterspaugh, and M. H. Williamson, “A single-mode Echelle spectrograph: eliminating modal variation, enabling higher precision Doppler study,” Proc. SPIE8450, 845045 (2012).
  8. C. Schwab, S. G. Leon-Saval, C. H. Betters, J. Bland-Hawthorn, and S. Mahadevan, “Single mode, extreme precision Doppler spectrographs,” IAU Proceedings, General Assembly, http://arxiv.org/abs/1212.4867 (2012).
  9. C. H. Bacigalupo, “A compact spectrograph to search for extrasolar planets,” honours thesis, Macquarie University, http://arxiv.org/abs/1308.2971 (2012).
  10. G. Duchêne, “High-angular resolution imaging of disks and planet,” New Astron. Rev.52(2–5), 117–144 (2008). [CrossRef]
  11. P. R. Wood, A. W. Rodgers, and K. S. Russell, “Seeing measurements at Freeling Heights and Siding Spring Observatory,” Publ. Astron. Soc. Aust.12, 95–105 (1995).
  12. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express18(8), 8430–8439 (2010). [CrossRef] [PubMed]
  13. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett.30(19), 2545–2547 (2005). [CrossRef] [PubMed]
  14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  15. D. Noordegraaf, P. M. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express17(3), 1988–1994 (2009). [CrossRef] [PubMed]
  16. J. Bland-Hawthorn, S. C. Ellis, S. G. Leon-Saval, R. Haynes, M. M. Roth, H.-G. Löhmannsröben, A. J. Horton, J.-G. Cuby, T. A. Birks, J. S. Lawrence, P. Gillingham, S. D. Ryder, and C. Trinh, “A complex multi-notch astronomical filter to suppress the bright infrared sky,” Nat. Commun.2, 581 (2011). [CrossRef] [PubMed]
  17. S. C. Ellis, J. Bland-Hawthorn, J. Lawrence, A. J. Horton, C. Trinh, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, W. Couch, K. Freeman, L. Gers, K. Glazebrook, R. Haynes, S. Lee, H.-G. Loehmannsroeben, J. O. Byrne, S. Miziarski, M. Roth, B. Schmidt, C. G. Tinney, and J. Zheng, “Suppression of the near-infrared OH night-sky lines with fibre Bragg gratings—first results,” Mon. Not. R. Astron. Soc.425(3), 1682–1695 (2012). [CrossRef]
  18. C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, W. Couch, K. Freeman, H.-G. Löhmannsröben, L. Gers, K. Glazebrook, R. Haynes, S. Lee, J. O'Byrne, S. Miziarski, M. M. Roth, B. Schmidt, C. G. Tinney, and J. Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J.145(2), 51 (2013). [CrossRef]
  19. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express17(3), 1963–1969 (2009). [CrossRef] [PubMed]
  20. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  21. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express19(6), 5698–5705 (2011). [CrossRef] [PubMed]
  22. N. Jovanovic, I. Spaleniak, S. Gross, M. Ireland, J. S. Lawrence, C. Miese, A. Fuerbach, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide,” Opt. Express20(15), 17029–17043 (2012). [CrossRef]
  23. N. Charles, N. Jovanovic, S. Gross, P. Stewart, B. Norris, J. O’Byrne, J. S. Lawrence, M. J. Withford, and P. G. Tuthill, “Design of optically path-length-matched, three-dimensional photonic circuits comprising uniquely routed waveguides,” Appl. Opt.51(27), 6489–6497 (2012). [CrossRef] [PubMed]
  24. RSoft, BeamPROP & FemSIM, www.rsoftdesign.com .
  25. S. M. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  26. T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 nm and 1550 nm,” Appl. Opt. A, doi: (2013). [CrossRef]
  27. J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: Photonic integrated multimode microspectrograph,” Proc. SPIE7735, 77350N (2010).
  28. R. R. Thomson, R. J. Harris, T. A. Birks, G. Brown, J. Allington-Smith, and J. Bland-Hawthorn, “Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics,” Opt. Lett.37(12), 2331–2333 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited