OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27238–27245

Nanowatt threshold, alumina sensitized neodymium laser integrated on silicon

Ashley J. Maker and Andrea M. Armani  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27238-27245 (2013)
http://dx.doi.org/10.1364/OE.21.027238


View Full Text Article

Enhanced HTML    Acrobat PDF (1526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low threshold lasers based on rare-earth elements have enabled numerous scientific discoveries and innovations in industry. However, pushing the threshold into the sub-microwatt regime has been stymied by a fundamental material phenomenon. Specifically, rare earth dopants form clusters which quench emission and reduce efficiency. Here, we fabricate resonant cavity lasers from neodymium-doped silica films containing alumina. The alumina prevents the clustering of the Neodymium, enabling the lasers to achieve thresholds of 530nanoWatts at room temperature.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.4780) Lasers and laser optics : Optical resonators
(160.5690) Materials : Rare-earth-doped materials
(160.6060) Materials : Solgel

ToC Category:
Integrated Optics

History
Original Manuscript: September 3, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 25, 2013
Published: November 1, 2013

Citation
Ashley J. Maker and Andrea M. Armani, "Nanowatt threshold, alumina sensitized neodymium laser integrated on silicon," Opt. Express 21, 27238-27245 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27238


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006). [CrossRef] [PubMed]
  2. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: A new clinical tool?” Lasers Surg. Med.30(3), 184–190 (2002). [CrossRef] [PubMed]
  3. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sensor Actuat. Biol. Chem.67, 57–67 (2000).
  4. J. A. Koningstein and J. E. Geusic, “Energy levels + crystal-field calculations of neodymium in yttrium aluminum garnet,” Phys. Rev.136(3A), A711–A716 (1964). [CrossRef]
  5. J. Yang, K. van Dalfsen, K. Worhoff, F. Ay, and M. Pollnau, “High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B101(1–2), 119–127 (2010). [CrossRef]
  6. C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm,” Appl. Phys. B98(2-3), 317–322 (2010). [CrossRef]
  7. J. Bonar, J. A. Bebbington, J. S. Aitchison, G. D. Maxwell, and B. J. Ainslie, “Aerosol doped Nd planar silica wave-guide laser,” Electron. Lett.31(2), 99–100 (1995). [CrossRef]
  8. T. Kitagawa, K. Hattori, Y. Hibino, and Y. Ohmori, “Neodymium-doped silica-based planar wave-guide lasers,” J. Lightwave Technol.12(3), 436–442 (1994). [CrossRef]
  9. Y. Li, G. Vienne, X. Jiang, X. Pan, X. Liu, P. Gu, and L. Tong, “Modeling rare-earth doped microfiber ring lasers,” Opt. Express14(16), 7073–7086 (2006). [CrossRef] [PubMed]
  10. E. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Tech.9(2), 271–283 (1991). [CrossRef]
  11. V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater.11(2–3), 153–165 (1999). [CrossRef]
  12. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996). [CrossRef] [PubMed]
  13. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003). [CrossRef] [PubMed]
  14. H. S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009). [CrossRef] [PubMed]
  15. J. T. Lin, Y. X. Xu, J. X. Song, B. Zeng, F. He, H. L. Xu, K. Sugioka, W. Fang, and Y. Cheng, “Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining,” Opt. Lett.38(9), 1458–1460 (2013). [CrossRef] [PubMed]
  16. W. V. Moreshead, J. L. R. Nogues, and R. H. Krabill, “Preparation, processing, and fluorescence characteristics of neodymium-doped silica glass prepared by the sol-gel process,” J. Non-Cryst. Solids121(1–3), 267–272 (1990). [CrossRef]
  17. B. Wilhelm, V. Romano, and H. P. Weber, “Fluorescence lifetime enhancement of Nd3+-doped sol-gel glasses by Al-codoping and CO2-laser processing,” J. Non-Cryst. Solids328(1–3), 192–198 (2003). [CrossRef]
  18. I. M. Thomas, S. A. Payne, and G. D. Wilke, “Optical-properties and laser demonstration of Nd-doped sol-gel silica glasses,” J. Non-Cryst. Solids151(3), 183–194 (1992). [CrossRef]
  19. A. J. Berry and T. A. King, “Characterization of doped sol-gel derived silica hosts for use in tunable glass lasers,” J. Phys. D Appl. Phys.22(10), 1419–1422 (1989). [CrossRef]
  20. T. Fujiyama, T. Yokoyama, M. Hori, and M. Sasaki, “Silica glass doped with Nd and Al prepared by the sol-gel method - change in the state of aluminum in the formation process,” J. Non-Cryst. Solids135(2–3), 198–203 (1991). [CrossRef]
  21. E. J. A. Pope and J. D. Mackenzie, “Nd-doped silica glass. 1. Structural evolution in the sol-gel state,” J. Non-Cryst. Solids106(1–3), 236–241 (1988). [CrossRef]
  22. A. J. Maker and A. M. Armani, “Fabrication of silica ultra high quality factor microresonators,” J. Visualized Exp.65, 4164 (2012).
  23. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).
  24. S. Mathur, M. Veith, H. Shen, S. Hufner, and M. H. Jilavi, “Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix,” Chem. Mater.14(2), 568–582 (2002). [CrossRef]
  25. G. M. Hale and M. R. Querry, “Optical-constants of water in 200-nm to 200-mum wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  26. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007). [CrossRef] [PubMed]
  27. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010). [CrossRef] [PubMed]
  28. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84(2), 793–821 (2012). [CrossRef] [PubMed]
  29. A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett.103(12), 123302 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited