OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27246–27259

Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence

Zhangrong Mei and Olga Korotkova  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27246-27259 (2013)
http://dx.doi.org/10.1364/OE.21.027246


View Full Text Article

Enhanced HTML    Acrobat PDF (5509 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A recently introduced class of scalar cosine-Gaussian Schell-Model [CGSM] beams is generalized to electromagnetic theory. The realizability conditions and the beam conditions on the source parameters are derived. Analytical formulas for the cross-spectral density matrix elements of the electromagnetic cosine-Gaussian Schell-model [EM CGSM] beams propagating in isotropic random medium are derived. It is found that the EM CGSM beams possess single-ring or double-ring intensity profiles, depending of source parameters. As two examples, the statistical characteristics of the EM CGSM beams propagating in free space and non-Kolmogorov turbulent atmosphere are studied numerically. The effects of the fractal constant of the atmospheric spectrum and the refractive-index structure constant on such characteristics are analyzed in detail.

© 2013 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.1640) Coherence and statistical optics : Coherence
(260.5430) Physical optics : Polarization

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 6, 2013
Revised Manuscript: October 23, 2013
Manuscript Accepted: October 25, 2013
Published: November 1, 2013

Citation
Zhangrong Mei and Olga Korotkova, "Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence," Opt. Express 21, 27246-27259 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27246


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  2. F. Gori, G. Guattari, and C. Padovani, “Modal expansion for J0-correlated Schell-model sources,” Opt. Commun.64(4), 311–316 (1987). [CrossRef]
  3. F. Gori, M. Santarsiero, and R. Borghi, “Modal expansion for J0-correlated electromagnetic sources,” Opt. Lett.33(16), 1857–1859 (2008). [CrossRef] [PubMed]
  4. H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett.36(20), 4104–4106 (2011). [CrossRef] [PubMed]
  5. S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett.37(14), 2970–2972 (2012). [CrossRef] [PubMed]
  6. O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A29(10), 2159–2164 (2012). [CrossRef] [PubMed]
  7. Z. Mei and O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett.38(2), 91–93 (2013). [CrossRef] [PubMed]
  8. O. Korotkova, M. Salem, and E. Wolf, “Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source,” Opt. Lett.29(11), 1173–1175 (2004). [CrossRef] [PubMed]
  9. H. Roychowdhury and O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun.249(4–6), 379–385 (2005). [CrossRef]
  10. F. Gori, V. Ramírez-Sánchez, M. Santarsiero, and T. Shirai, “On genuine cross-spectral density matrices,” J. Opt. A, Pure Appl. Opt.11(8), 085706 (2009). [CrossRef]
  11. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt.3(1), 1–9 (2001). [CrossRef]
  12. O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun.246(1–3), 35–43 (2005). [CrossRef]
  13. X. Du, D. Zhao, and O. Korotkova, “Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere,” Opt. Express15(25), 16909–16915 (2007). [CrossRef] [PubMed]
  14. Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt.15(2), 025705 (2013). [CrossRef]
  15. Z. Tong and O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A29(10), 2154–2158 (2012). [CrossRef] [PubMed]
  16. Z. Mei, Z. Tong, and O. Korotkova, “Electromagnetic non-uniformly correlated beams in turbulent atmosphere,” Opt. Express20(24), 26458–26463 (2012). [CrossRef] [PubMed]
  17. G. Gbur and T. D. Visser, “Can spatial coherence effects produce a local minimum of intensity at focus,” Opt. Lett.28(18), 1627–1629 (2003). [CrossRef] [PubMed]
  18. Y. Cai and F. Wang, “Partially coherent anomalous hollow beam and its paraxial propagation,” Phys. Lett. A372(25), 4654–4660 (2008). [CrossRef]
  19. M. Alavinejad, G. Taherabadi, N. Hadilou, and B. Ghafary, “Changes in the coherence properties of partially coherent dark hollow beam propagating through atmospheric turbulence,” Opt. Commun.288, 1–6 (2013). [CrossRef]
  20. Z. Mei and O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett.38(14), 2578–2580 (2013). [CrossRef] [PubMed]
  21. Z. Mei, E. Shchepakina, and O. Korotkova, “Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence,” Opt. Express21(15), 17512–17519 (2013). [CrossRef] [PubMed]
  22. H. T. Eyyuboğlu and Y. Baykal, “Transmittance of partially coherent cosh-Gaussian, cos-Gaussian and annular beams in turbulence,” Opt. Commun.278(1), 17–22 (2007). [CrossRef]
  23. G. Zhou and X. Chu, “Propagation of a partially coherent cosine-Gaussian beam through an ABCD optical system in turbulent atmosphere,” Opt. Express17(13), 10529–10534 (2009). [CrossRef] [PubMed]
  24. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Some limitations on optical communication reliability through Kolmogorov and non-Kolmogorov turbulence,” Opt. Commun.283(7), 1229–1235 (2010). [CrossRef]
  25. E. Wolf, Introduction to the Theories of Coherence and Polarization of Light (Cambridge University, 2007).
  26. X. Du and D. Zhao, “Polarization modulation of stochastic electromagnetic beams on propagation through the turbulent atmosphere,” Opt. Express17(6), 4257–4262 (2009). [CrossRef] [PubMed]
  27. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE6551(65510E), 65510E (2007). [CrossRef]
  28. E. Shchepakina and O. Korotkova, “Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence,” Opt. Express18(10), 10650–10658 (2010). [CrossRef] [PubMed]
  29. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng.47(2), 026003 (2008). [CrossRef]
  30. T. Shirai, O. Korotkova, and E. Wolf, “A method of generating electromagnetic Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt.7(5), 232–237 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited