OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27260–27268

Entanglement-based quantum key distribution with biased basis choice via free space

Yuan Cao, Hao Liang, Juan Yin, Hai-Lin Yong, Fei Zhou, Yu-Ping Wu, Ji-Gang Ren, Yu-Huai Li, Ge-Sheng Pan, Tao Yang, Xiongfeng Ma, Cheng-Zhi Peng, and Jian-Wei Pan  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27260-27268 (2013)
http://dx.doi.org/10.1364/OE.21.027260


View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a free-space entanglement-based quantum key distribution experiment, implementing the biased basis protocol between two sites which are 15.3 km apart. Photon pairs from a polarization-entangled source are distributed through two 7.8-km free-space optical links. An optimal bias 20:80 between the X and Z basis is used. A post-processing scheme with finite-key analysis is applied to extract the final secure key. After three-hour continuous operation at night, a 4293-bit secure key is obtained, with a final key rate of 0.124 bit per raw key bit which increases the final key rate by 14.8% comparing to the standard BB84 case. Our results experimentally demonstrate that the efficient BB84 protocol, which increases key generation efficiency by biasing Alice and Bob’s basis choices, is potentially useful for the ground-satellite quantum communication.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 30, 2013
Revised Manuscript: October 21, 2013
Manuscript Accepted: October 24, 2013
Published: November 1, 2013

Citation
Yuan Cao, Hao Liang, Juan Yin, Hai-Lin Yong, Fei Zhou, Yu-Ping Wu, Ji-Gang Ren, Yu-Huai Li, Ge-Sheng Pan, Tao Yang, Xiongfeng Ma, Cheng-Zhi Peng, and Jian-Wei Pan, "Entanglement-based quantum key distribution with biased basis choice via free space," Opt. Express 21, 27260-27268 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27260


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (New York, 1985) p.175.
  2. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett.68, 3121–3124 (1992). [CrossRef] [PubMed]
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
  4. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett.68, 557–559 (1992). [CrossRef] [PubMed]
  5. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” Journal of Cryptology ( 5), 3–28 (1992). [CrossRef]
  6. In fact, commercial QKD systems have already been available in the market, for example, www.magiqtech.com ; www.idquantique.com ; www.quantum-info.com .
  7. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express16, 18790–18979 (2008). [CrossRef]
  8. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Practical gigahertz quantum key distribution based on avalanche photodiodes,” New J. Phys.11, 045019 (2009). [CrossRef]
  9. Y. Liu, T.-Y. Chen, J. Wang, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, K. Chen, Z.-B. Chen, and J.-W. Pan, “Decoy-state quantum key distribution with polarized photons over 200 km,” Opt. Express18, 8587–8594 (2010). [CrossRef] [PubMed]
  10. M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. Leeb, and A. Zeilinger, “Long-distance quantum communication with entangled photons using satellites,” IEEE J. Sel. Top. Quantum Electron.9, 1514–1551 (2003).
  11. T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett.98, 010504 (2007). [CrossRef] [PubMed]
  12. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Omer, M. Frst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3, 481–486 (2007). [CrossRef]
  13. C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, “Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication,” Phys. Rev. Lett.94, 150501 (2005). [CrossRef] [PubMed]
  14. C. Erven, C. Couteau, R. Laflamme, and G. Weihs, “Entangled quantum key distribution over two free-space optical links,” Opt. Express16, 16840–16853 (2008). [CrossRef] [PubMed]
  15. S. Nauerth, F. Moll, M. Rau, J. Horwath, S. Frick, C. Fuchs, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics7, 382–386 (2013). [CrossRef]
  16. J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground-satellite quantum key distribution,” Nat. Photonics7, 387–393 (2013). [CrossRef]
  17. J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature488, 185–188 (2012). [CrossRef] [PubMed]
  18. X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature489, 269–273 (2012). [CrossRef] [PubMed]
  19. H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” Journal of Cryptology18, 133–165 (2005). [CrossRef]
  20. C. Erven, X. Ma, R. Laflamme, and G. Weihs, “Entangled quantum key distribution with a biased basis choice,” New J. Phys.11, 045025 (2009). [CrossRef]
  21. X. Ma, C.-H. F. Fung, J.-C. Boileau, and H.F. Chau, “Universally composable and customizable post-processing for practical quantum key distribution,” Computers & Security30, 172–177 (2011). [CrossRef]
  22. C.-H. F. Fung, X. Ma, and H. F. Chau, “Practical issues in quantum-key-distribution postprocessing,” Phys. Rev. A81, 012318 (2010). [CrossRef]
  23. X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth tanner graphs,” Information Theory, IEEE Transactions on51, 386 (2005). [CrossRef]
  24. M. Koashi and J. Preskill, “Secure quantum key distribution with an uncharacterized source,” Phys. Rev. Lett.90, 057902 (2003). [CrossRef] [PubMed]
  25. This can be simply calculated by comparing the basis-sift factor of 0.22+ 0.82= 0.68 to 1/2.
  26. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012). [CrossRef] [PubMed]
  27. H. Xin, “Chinese academy takes space under its wing,” Science332, 904 (2011). [CrossRef]
  28. R. Stone, “Entangled Secret Messages From Space,” Science336, 1632 (2012). [CrossRef] [PubMed]
  29. C. Bonato, A. Tomaello, V. D. Deppo, G. Naletto, and P. Villoresi, “Feasibility of satellite quantum key distribution,” New J. Phys.11, 045017 (2005). [CrossRef]
  30. J. Yin, Y. Cao, S.-B. Liu, G.-S. Pan, J.-H. Wang, T. Yang, Z.-P. Zhang, F.-M. Yang, Y.-A. Chen, C.-Z. Peng, and J.-W Pan, “Experimental quasi-single-photon transmission from satellite to earth,” Opt. Express2120032–20040 (2013) [CrossRef] [PubMed]
  31. M. J. LaGasse, “Secure use of a single single-photon detector in a QKD system,” US patent application 20050190922, (2005).
  32. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput.7, 073 (2007).
  33. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78, 042333 (2008). [CrossRef]
  34. V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A74, 022313 (2006). [CrossRef]
  35. N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107, 110501 (2011). [CrossRef] [PubMed]
  36. J. Yin, Y. Cao, H.-L. Yong, J.-G. Ren, H. Liang, S.-K. Liao, F. Zhou, C. Liu, Y.-P. Wu, G.-S. Pan, L. Li, N.-L. Liu, Q. Zhang, C.-Z. Peng, and J.-W. Pan, “Lower bound on the speed of nonlocal correlations without locality and measurement choice loopholes,” Phys. Rev. Lett.110, 260407 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited