OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27277–27283

Control of forward stimulated polariton scattering in periodically-poled KTP crystals

Hoon Jang, Gustav Strömqvist, Valdas Pasiskevicius, and Carlota Canalias  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27277-27283 (2013)
http://dx.doi.org/10.1364/OE.21.027277


View Full Text Article

Enhanced HTML    Acrobat PDF (958 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report suppression of forward stimulated polariton scattering (SPS) in χ(2) structured media. Periodic poling in KTiOPO4 (KTP) leads to the destructive interference of phonon-polariton waves, which is responsible for the dependence of the SPS threshold on the poling period. This was confirmed by comparing the SPS thresholds in periodically-poled KTP (PPKTP) crystals with different poling periods. Further confirming the physical picture, we studied the changes in the Stokes power distribution as a function of the rotation angle of the PPKTP crystal.

© 2013 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(190.4400) Nonlinear optics : Nonlinear optics, materials
(290.5910) Scattering : Scattering, stimulated Raman
(130.2260) Integrated optics : Ferroelectrics

ToC Category:
Integrated Optics

History
Original Manuscript: September 24, 2013
Revised Manuscript: October 28, 2013
Manuscript Accepted: October 28, 2013
Published: November 1, 2013

Citation
Hoon Jang, Gustav Strömqvist, Valdas Pasiskevicius, and Carlota Canalias, "Control of forward stimulated polariton scattering in periodically-poled KTP crystals," Opt. Express 21, 27277-27283 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27277


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Bahl, M. Tomer, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8(3), 203–207 (2012), http://www.nature.com/nphys/journal/v8/n3/full/nphys2206.html?WT.ec_id=NPHYS-201203 . [CrossRef]
  2. P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelp, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys.2(6), 388–392 (2006), http://www.nature.com/nphys/journal/v2/n6/abs/nphys315.html . [CrossRef]
  3. N. S. Stoyanov, D. W. Ward, Th. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater.1(2), 95–98 (2002), http://www.nature.com/index.html?file=/nmat/journal/v1/n2/full/nmat725.html&filetype=pdf . [CrossRef] [PubMed]
  4. C. H. Henry and J. J. Hopfield, “Raman Scattering by Polaritons,” Phys. Rev. Lett.15(25), 964–966 (1965), http://prl.aps.org/abstract/PRL/v15/i25/p964_1 . [CrossRef]
  5. A. S. Barker and R. Loudon, “Response functions in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals,” Rev. Mod. Phys.44(1), 18–47 (1972), http://rmp.aps.org/abstract/RMP/v44/i1/p18_1 . [CrossRef]
  6. T. Buma and T. B. Norris, “Coded excitation of boradband terahertz using optical rectification in poled lithium niobate,” Appl. Phys. Lett.87(25), 251105 (2005), http://apl.aip.org/resource/1/applab/v87/i25/p251105_s1 . [CrossRef]
  7. Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett.81(18), 3323–3325 (2002), http://apl.aip.org/resource/1/applab/v81/i18/p3323_s1 . [CrossRef]
  8. V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly-efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006), http://apl.aip.org/resource/1/applab/v88/i4/p041110_s1 . [CrossRef]
  9. U. T. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B58(2), 766–775 (1998), http://prb.aps.org/abstract/PRB/v58/i2/p766_1 . [CrossRef]
  10. B. Bittner, M. Scherm, T. Schoedl, T. Tyroller, U. T. Schwarz, and M. Maier, “Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering,” J. Phys. Condens. Matter14(39), 9013–9028 (2002), http://iopscience.iop.org/0953-8984/14/39/311/ . [CrossRef]
  11. G. Strömqvist, V. Pasiskevicius, C. Canalias, and F. Laurell, “Suppression of forward stimulated Raman scattering in periodically poled nonlinear crystals,” ASSP 2009, Denver, CO February (2009). http://www.opticsinfobase.org/abstract.cfm?uri=ASSP-2009-TuC4 [CrossRef]
  12. G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontatna, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. Chem.21, 5565–5583 (1988), http://iopscience.iop.org/0022-3719/21/32/011/ .
  13. S. S. Sussman, Microwave Laboratory, W. W. Hansen Laboratories of Physics, Stanford University, Stanford, California, Report No. 1851, (1970).
  14. C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev.171(3), 1058–1064 (1968), http://prola.aps.org/abstract/PR/v171/i3/p1058_1 . [CrossRef]
  15. Y. R. Shen, The Principles of Nonlinear Optics (Wiley & Sons, 1984), Chap. 10.
  16. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-14-9-2268 . [CrossRef]
  17. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B6(4), 622–633 (1989), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-6-4-622 . [CrossRef]
  18. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1988), Chapter 16.
  19. W. D. Johnston and I. P. Kaminow, “Contributions to Optical Nonlinearity in Gaas as Determined from Raman Scattering Efficiencies,” Phys. Rev.188(3), 1209–1211 (1969), http://prola.aps.org/abstract/PR/v188/i3/p1209_1 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited