OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27291–27305

Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, Alain Dereux, and N. Pleros  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27291-27305 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The thermo-optical dynamics of polymer loaded surface plasmon waveguide (PLSPPW) based devices photo-thermally excited in the nanosecond regime is investigated. We demonstrate thermo-absorption of PLSPPW modes mediated by the temperature-dependent ohmic losses of the metal and the thermally controlled field distribution of the plasmon mode within the metal. For a PLSPPW excited by sub-nanosecond long pulses, we find that the thermo-absorption process leads to modulation depths up to 50% and features an activation time around 2ns whereas the relaxation time is around 800ns, four-fold smaller than the cooling time of the metal film itself. Next, we observe the photo-thermal activation of PLSPPW racetrack shaped resonators at a time scale of 300ns followed however by a long cooling time (18μs) attributed to the poor heat diffusivity of the polymer. We conclude that nanosecond excitation combined to high thermal diffusivity materials opens the way to high speed thermo-optical plasmonic devices.

© 2013 OSA

OCIS Codes
(160.3900) Materials : Metals
(160.6840) Materials : Thermo-optical materials
(240.6680) Optics at surfaces : Surface plasmons
(130.4815) Integrated optics : Optical switching devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:

Original Manuscript: July 18, 2013
Revised Manuscript: October 3, 2013
Manuscript Accepted: October 7, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, Alain Dereux, and N. Pleros, "Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides," Opt. Express 21, 27291-27305 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon polariton waves,” J. Lightwave Technol.24, 4391–4409 (2006). [CrossRef]
  2. K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express20, 15546–15552 (2008). [CrossRef]
  3. T. Nikolajsen, K. Leosson, and S. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004). [CrossRef]
  4. T. Nikolajsen, K. Leosson, and S. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polarintons,” Opt. Commun.244, 455–459 (2005). [CrossRef]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metals of finite width: Bound modes of symmetric structures,” Phys. Rev. B61, 10484–10503 (2000). [CrossRef]
  6. T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon waveguides,” Phys. Rev. B75, 245405 (2007). [CrossRef]
  7. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon waveguides,” Appl. Phys. Lett.90, 211101 (2007). [CrossRef]
  8. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007). [CrossRef]
  9. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.106, 093109 (2009). [CrossRef]
  10. O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109, 073111 (2011). [CrossRef]
  11. A. Pitilakis and E. E. Kriezis, “Longitudinal 2×2 switching configurations based on thermo-optically addressed dielectric-loaded plasmonic waveguides,” J. Lightwave Technol.29, 2636–2646 (2011). [CrossRef]
  12. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010). [CrossRef] [PubMed]
  13. J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach–Zehnder interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express20, 16300–16309 (2012). [CrossRef]
  14. K. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110, 023106 (2011). [CrossRef]
  15. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriezis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241110 (2011). [CrossRef]
  16. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10, 4851–4857 (2010). [CrossRef]
  17. N. Pleros, E. E. Kriezis, and K. Vyrsokinos, “Optical interconnects using plasmonics and Si-photonics,” IEEE Photon. J.3, 296–301 (2011). [CrossRef]
  18. O. Tsilipakos, A. Pitilakis, T. Yioultsis, S. Papaioannou, K. Vyrsokinos, G. D. Kalavrouziotis, D. Giannoulis, H. Apostolopoulos, T. Avramopoulos, M. Tekin, M. Baus, K. Karl, J.-C. Hassan, L. Weeber, A. Markey, S. Dereux, A. Kumar, Bozhevolnyi, N. Pleros, and E. Kriezis, “Interfacing dielectric-loaded plasmonic and silicon photonic waveguides: Theoretical analysis and experimental demonstration,” IEEE J. Quantum Electron.48, 678–687 (2012). [CrossRef]
  19. D. Kalavrouziotis, S. Papaioannou, K. Vyrsokinos, L. Markey, A. Dereux, G. Giannoulis, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Demonstration of a plasmonic MMI switch in 10-Gb/s true data traffic conditions,” IEEE Photon. Technol. Lett.24, 1819–1822 (2012). [CrossRef]
  20. S. Papaioannou, D. Kalavrouziotis, K. Vyrsokinos, J.-C. Weeber, K. Hassan, L. Markey, A. Dereux, A. Kumar, S. I. Bozhevolnyi, T. Baus, M. Tekin, D. Apostolopoulos, H. Avramopoulos, and N. Pleros, “Active plasmonics in WDM traffic switching applications,” Sci. Rep.2, 1358–1361 (2012). [CrossRef]
  21. G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. I. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, M. Dereux, A. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriezis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012). [CrossRef]
  22. J.-C. Weeber, K. Hassan, L. Saviot, A. Dereux, C. Boissière, O. Durupthy, C. Chaneac, E. Burov, and A. Pastouret, “Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches,” Opt. Express20, 27636–27649 (2012). [CrossRef] [PubMed]
  23. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express15, 17458–17481 (2007). [CrossRef] [PubMed]
  24. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express21, 15706–15718 (2013). [CrossRef] [PubMed]
  25. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steiberger, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149, 220–229 (2008). [CrossRef]
  26. J. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley and Sons, 1999).
  27. M. Nevière and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, Inc., 2003).
  28. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol.17, 929–941 (1999). [CrossRef]
  29. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, 1988).
  30. M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012). [CrossRef]
  31. S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, and C. Finot, “Photo-thermally induced modulation of surface plasmon polariton propagation at telecommunication wavelengths,” Opt. Express21, 22269–22284 (2013). [CrossRef] [PubMed]
  32. R. J. Baseman, N. M. Froberg, J. C. Andreshak, and Z. Schlesinger, “Minimum fluence for laser blow-off of thin gold films at 248 and 532nm,” Appl. Phys. Lett.56, 1412–1414 (1990). [CrossRef]
  33. X. Chen, Y. Chen, Y. Min, and M. Qiu, “Nanosecond photothermal effect in plasmonic nanostructures,” ACS Nano6, 2550–2556 (2012). [CrossRef] [PubMed]
  34. E. Marin, “Characteristic dimensions for heat transfer,” Lat. Am. J. Phys. Educ.4, 56–60 (2010).
  35. D. P. Brunco, J. A. Kittl, C. E. Otis, P. M. Goodwin, M. O. Thompson, and M. J. Aziz, “Time-resolved temperature measurements during pulsed laser irradiation using thin film metal thermometers,” Rev. Sci. Instrum.64, 2615–2623 (1993). [CrossRef]
  36. J. Gosciniak and S. Bozhevolnyi, “Performances of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides,” Sci. Rep.3, 1803 (2013). [CrossRef]
  37. A. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168Gb/s data pulses with an hybrid-integrated symetric Mach-Zehnder all-optical switch,” IEEE Photon. Technol. Lett.12, 425–427 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited