OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27306–27325

Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers

Tatiana V. Teperik, Peter Nordlander, Javier Aizpurua, and Andrei G. Borisov  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27306-27325 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a fully quantum mechanical approach we study the optical response of a strongly coupled metallic nanowire dimer for variable separation widths of the junction between the nanowires. The translational invariance of the system allows to apply the time–dependent density functional theory (TDDFT) for nanowires of diameters up to 10 nm which is the largest size considered so far in quantum modeling of plasmonic dimers. By performing a detailed analysis of the optical extinction, induced charge densities, and near fields, we reveal the major nonlocal quantum effects determining the plasmonic modes and field enhancement in the system. These effects consist mainly of electron tunneling between the nanowires at small junction widths and dynamical screening. The TDDFT results are compared with results from classical electromagnetic calculations based on the local Drude and non-local hydrodynamic descriptions of the nanowire permittivity, as well as with results from a recently developed quantum corrected model. The latter provides a way to include quantum mechanical effects such as electron tunneling in standard classical electromagnetic simulations. We show that the TDDFT results can be thus retrieved semi-quantitatively within a classical framework. We also discuss the shortcomings of classical non-local hydrodynamic approaches. Finally, the implications of the actual position of the screening charge density at the gap interfaces are discussed in connection with plasmon ruler applications at subnanometric distances.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: July 29, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: September 20, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Tatiana V. Teperik, Peter Nordlander, Javier Aizpurua, and Andrei G. Borisov, "Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers," Opt. Express 21, 27306-27325 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B107, 668–667 (2003). [CrossRef]
  2. R. Alvarez-Puebla, L. M. Liz-Marzán, and F. J. García de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett.1, 2428–2434 (2010). [CrossRef]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials9, 193–204 (2010). [CrossRef] [PubMed]
  4. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011). [CrossRef] [PubMed]
  5. A. J. Pasquale, B. M. Reinhard, and L. D. Negro, “Engineering photonic-plasmonic coupling in metal nanoparticle necklaces,” ACS Nano5, 6578–6585 (2011). [CrossRef] [PubMed]
  6. H. Xu, E. Bjeneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999). [CrossRef]
  7. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5, 1569–1574 (2005). [CrossRef] [PubMed]
  8. J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett.10, 2749–2754 (2010). [CrossRef] [PubMed]
  9. B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. B. de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano5, 5945–5956 (2011). [CrossRef] [PubMed]
  10. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  11. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009). [CrossRef]
  12. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nature Photonics2, 234–237 (2008). [CrossRef]
  13. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008). [CrossRef] [PubMed]
  14. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23, 1331–1333 (1998). [CrossRef]
  15. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials2, 229–232 (2003). [CrossRef] [PubMed]
  16. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B109, 1079–1087 (2005). [CrossRef]
  17. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7, 2080–2088 (2007). [CrossRef]
  18. R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with angstrom length resolution,” ACS Nano6, 9237–9246 (2012). [CrossRef] [PubMed]
  19. X. Ben and H. S. Park, “Size-dependent validity bounds on the universal plasmon ruler for metal nanostructure dimers,” J. Phys. Chem. C116, 18944–18951 (2012). [CrossRef]
  20. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332, 1407–1410 (2011). [CrossRef] [PubMed]
  21. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3, 1231–1237 (2009). [CrossRef] [PubMed]
  22. B. K. Juluri, N. Chaturvedi, Q. Z. Hao, M. Q. Lu, D. Velegol, L. Jensen, and T. J. Huang, “Scalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography,” ACS Nano5, 5838–5847 (2011). [CrossRef] [PubMed]
  23. R. Arielly, A. Ofarim, G. Noy, and Y. Selzer, “Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies,” Nano Lett.11, 2968–2972 (2011). [CrossRef] [PubMed]
  24. J. Kern, S. Großmann, N. V. Tarakina, T. Häckel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. C. Prangsma, and B. Hecht, “Atomic-scale confinement of resonant optical fields,” Nano Lett.12, 5504–5509 (2012). [CrossRef] [PubMed]
  25. H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett.12, 1683–1689 (2012). [CrossRef] [PubMed]
  26. R. W. Taylor, T.-Ch. Lee, O. A. Scherman, R. Esteban, J. Aizpurua, F. M. Huang, J. J. Baumberg, and S. Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril ”glue”,” ACS Nano5, 3878–3887 (2011). [CrossRef] [PubMed]
  27. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98, 026104 (2007). [CrossRef] [PubMed]
  28. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature491, 574–577 (2012). [CrossRef] [PubMed]
  29. J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett.13, 564–569 (2013). [CrossRef]
  30. D. R. Ward, F. Hueser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nature Nanotechnology5, 732–736 (2010). [CrossRef] [PubMed]
  31. J. Zuolaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett.9, 887–891 (2009). [CrossRef]
  32. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett.12, 1333–1339 (2012). [CrossRef] [PubMed]
  33. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nature Commun.3, 825 (2012). [CrossRef]
  34. J. Zuolaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4, 5269–5276 (2010). [CrossRef]
  35. L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P. García-González, “Performance of nonlocal optics when applied to plasmonic nanostructures,” J. Phys. Chem. C117, 8941–8949 (2013). [CrossRef]
  36. T. V. Teperik, P. Nordlander, J. Aizpurua, and A.G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett.110, 263901 (2013). [CrossRef] [PubMed]
  37. K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S. Thygesen, “Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime,” Phys. Rev. B87, 235433 (2013). [CrossRef]
  38. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C112, 17983–17987 (2008). [CrossRef]
  39. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C115, 19470–19475 (2011). [CrossRef]
  40. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Nonlocal optical response of metal nanostructures with arbitrary shape,” Phys. Rev. Lett.103, 097403 (2009). [CrossRef] [PubMed]
  41. J. M. McMahon, S. K. Gray, and G. C. Schatz, “Optical properties of nanowire dimers with a spatially nonlocal dielectric function,” Nano Lett.10, 3473–3481 (2010). [CrossRef] [PubMed]
  42. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012). [CrossRef] [PubMed]
  43. A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012). [CrossRef] [PubMed]
  44. A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. García-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B86,241110(R) (2012). [CrossRef]
  45. G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Optics Express20, 4176–4188 (2012). [CrossRef] [PubMed]
  46. G. Toscano, S. Raza, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Surface-enhanced Raman spectroscopy (SERS): nonlocal limitations,” Opt. Lett.37, 2538–2540 (2012). [CrossRef] [PubMed]
  47. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120, 357–366 (2004). [CrossRef] [PubMed]
  48. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Optics Express14, 9988–9999 (2006). [CrossRef] [PubMed]
  49. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487, 153–164 (2010). [CrossRef]
  50. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Optics Express8, 655–663 (2001). [CrossRef] [PubMed]
  51. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4, 1627–1631 (2004). [CrossRef]
  52. S. Marhaba, G. Bachelier, Ch. Bonnet, M. Broyer, E. Cottancin, N. Grillet, J. Lerme, J.-L. Vialle, and M. Pellarin, “Surface plasmon resonance of single gold nanodimers near the conductive contact limit,” J. Phys. Chem. C113, 4349–4356 (2009). [CrossRef]
  53. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics3, 287–291 (2009). [CrossRef]
  54. O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett.10, 3090–3095 (2010). [CrossRef] [PubMed]
  55. O. Pérez-González, N. Zabala, and J. Aizpurua, “Optical characterization of charge transfer and bonding dimer plasmons in linked interparticle gaps,” New J. Phys.13, 083013 (2011). [CrossRef]
  56. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano5, 2042–2050 (2011). [CrossRef] [PubMed]
  57. M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano6, 10343–10354 (2012). [CrossRef] [PubMed]
  58. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Optics Lett.26, 1096–1098 (2001). [CrossRef]
  59. K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B72, 075429 (2005). [CrossRef]
  60. P. K. Jain and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110, 18243–18253 (2006). [CrossRef] [PubMed]
  61. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett.9, 1651–1658 (2009). [CrossRef] [PubMed]
  62. C. Tabor, D. Van Haute, and M. A. El-Sayed, “Effect of Orientation on plasmonic coupling between gold nanorods,” ACS Nano3, 3670–3678 (2009). [CrossRef] [PubMed]
  63. D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmon interaction between overlapping nanowires,” ACS Nano5, 597–607 (2011). [CrossRef]
  64. C. Yannouleas, E. Vigezzi, and R. A. Broglia, “Evolution of the optical properties of alkali-metal microclusters towards the bulk: The matrix random-phase-approximation description,” Phys. Rev. B47, 9849–9861 (1993). [CrossRef]
  65. M. A. L. Marques and E. K. U. Gross, “Time-dependent density functional theory,” Ann. Rev. of Phys. Chem.55, 427–455 (2004). [CrossRef]
  66. O. Gunnarson and B. I. Lundqvist, “Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism,” Phys. Rev. B13, 4274–4298 (1976). [CrossRef]
  67. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B48, 18178–18188 (1993). [CrossRef]
  68. P. Apell and D. R. Penn, “Optical properties of small metal spheres: surface effects,” Phys. Rev. Lett.50, 1316–1319 (1983). [CrossRef]
  69. J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Size-Dependent Plasmon lifetimes and electron-phonon coupling time constants for surface bound Na clusters,” Phys. Rev. Lett.80, 45–48 (1998). [CrossRef]
  70. J. H. Parks and S. A. McDonald, “Evolution of the collective-mode resonance in small adsorbed sodium clusters,” Phys. Rev. Lett.62, 2301–2304 (1989). [CrossRef] [PubMed]
  71. J. Borggreen, P. Chowdhury, N. Kebaïli, L. Lundsberg-Nielsen, K. Lützenkirchen, M. B. Nielsen, J. Pedersen, and H. D. Rasmussen, “Plasma excitations in charged sodium clusters,” Phys. Rev. B48, 17507–17516 (1993). [CrossRef]
  72. T. Reiners, C. Ellert, M. Schmidt, and H. Haberland, “Size dependence of the optical response of spherical sodium clusters,” Phys. Rev. Lett.74, 1558–1561 (1995). [CrossRef] [PubMed]
  73. P. Apell and Å. Ljungbert, “Red shift of surface plasmons in small metal particles,” Solid State Commun.44, 1367–1369 (1982). [CrossRef]
  74. A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B48, 11317–11328 (1993). [CrossRef]
  75. P. J. Feibelman, “Surface electromagnetic fields,” Progress in Surface Science12, 287–407 (1982). [CrossRef]
  76. A. Liebsch, “Dynamical screening at simple-metal surfaces,” Phys. Rev. B36, 7378–7388 (1987). [CrossRef]
  77. P. Apell, Å. Ljungbert, and S. Lundqvist, “Non-local effects at metal surfaces,” Physica Scripta30, 367–383 (1984). [CrossRef]
  78. R. C. Monreal, T. J. Antosiewicz, and P. Apell, “Competition between surface screening and size quantization for surface plasmons in nanoparticles,” New J. Phys.15, 083044 (2013). [CrossRef]
  79. J. Tiggesbäumker, L. Köller, K.-H. Meiwes-Broer, and A. Liebsch, “Blue shift of the Mie plasma frequency in Ag clusters and particles,” Phys. Rev. A48, R1749–R1752 (1993). [CrossRef] [PubMed]
  80. A. Liebsch and W. L. Schaich, “Influence of a polarizable medium on the nonlocal optical response of a metal surface.” Phys. Rev. B52, 14219–14234 (1995). [CrossRef]
  81. L. Serra and A. Rubio, “Core polarization in the optical response of metal clusters: generalized time-dependent density-functional theory,” Phys. Rev. Lett.78, 1428–1431 (1997). [CrossRef]
  82. E. Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of Gold nanoshells,” Nano Lett.3, 1411–1415 (2003). [CrossRef]
  83. E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic nanoshells,” Chem. Phys. Lett.368, 94–101 (2003). [CrossRef]
  84. K.-D. Tsuei, E. W. Plummer, A. Liebsch, K. Kempa, and P. Bakshi, “Multipole plasmon modes at a metal surface,” Phys. Rev. Lett.64, 44–47 (1990). [CrossRef] [PubMed]
  85. A. J. Bennett, “Influence of the electron charge distribution on surface-plasmon dispersion,” Phys. Rev. B1, 203–207 (1970). [CrossRef]
  86. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007). [CrossRef]
  87. J. Lermé, B. Palpant, B. Prével, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, “Quenching of the size effects in free and matrix-embedded silver clusters,” Phys. Rev. Lett.80, 5105–5108 (1998). [CrossRef]
  88. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5, 515–518 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited