OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27326–27337

Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials

Viktoriia E. Babicheva, Nathaniel Kinsey, Gururaj V. Naik, Marcello Ferrera, Andrei V. Lavrinenko, Vladimir M. Shalaev, and Alexandra Boltasseva  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27326-27337 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose several planar layouts of ultra-compact plasmonic modulators that utilize alternative plasmonic materials such as transparent conducting oxides and titanium nitride. The modulation is achieved by tuning the carrier concentration in a transparent conducting oxide layer into and out of the plasmon resonance with an applied electric field. The resonance significantly increases the absorption coefficient of the modulator, which enables larger modulation depth. We show that an extinction ratio of 46 dB/µm can be achieved, allowing for a 3-dB modulation depth in much less than one micron at the telecommunication wavelength. Our multilayer structures can be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits.

© 2013 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.7360) Optoelectronics : Waveguide modulators
(250.5403) Optoelectronics : Plasmonics
(250.4110) Optoelectronics : Modulators

ToC Category:

Original Manuscript: July 26, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: October 18, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Viktoriia E. Babicheva, Nathaniel Kinsey, Gururaj V. Naik, Marcello Ferrera, Andrei V. Lavrinenko, Vladimir M. Shalaev, and Alexandra Boltasseva, "Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials," Opt. Express 21, 27326-27337 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Dionne and H. A. Atwater, “Plasmonics: metal-worthy methods and materials in nanophotonics,” MRS Bull.37(08), 717–724 (2012). [CrossRef]
  2. M. L. Brongersma and V. M. Shalaev, “Applied physics. the case for plasmonics,” Science328(5977), 440–441 (2010). [CrossRef] [PubMed]
  3. V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull.37(08), 728–738 (2012). [CrossRef]
  4. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  5. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing, 2009).
  6. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009). [CrossRef]
  7. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005). [CrossRef]
  8. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13(3), 977–984 (2005). [CrossRef] [PubMed]
  9. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol.24(1), 477–494 (2006). [CrossRef]
  10. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011). [CrossRef]
  11. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett.36(21), 4278–4280 (2011). [CrossRef] [PubMed]
  12. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5835 (2004). [CrossRef]
  13. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun.244(1-6), 455–459 (2005). [CrossRef]
  14. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  15. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  16. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010). [CrossRef]
  17. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express19(9), 8855–8869 (2011). [CrossRef] [PubMed]
  18. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett.109(5), 053901 (2012). [CrossRef] [PubMed]
  19. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 1–6 (2012). [CrossRef]
  20. C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J.5(4), 2202411 (2013). [CrossRef]
  21. V. E. Babicheva, I. V. Kulkova, R. Malureanu, K. Yvind, and A. V. Lavrinenko, “Plasmonic modulator based on gain-assisted metal–semiconductor–metal waveguide,” Photon. Nanostructures10(4), 389–399 (2012). [CrossRef]
  22. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “Surface plasmon polariton high-speed modulator,” CLEO: 2013, OSA Technical Digest, paper CTh5D.2 (2013).
  23. R. Thomas, Z. Ikonic, and R. W. Kelsall, “Electro-optic metal–insulator–semiconductor–insulator–metal Mach-Zehnder plasmonic modulator,” Photon. Nanostructures10(1), 183–189 (2012). [CrossRef]
  24. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011). [CrossRef] [PubMed]
  25. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010). [CrossRef]
  26. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys.100(5), 054905 (2006). [CrossRef]
  27. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi RRL4(10), 295–297 (2010). [CrossRef]
  28. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.)5(1), 1–7 (2011). [CrossRef]
  29. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express4(6), 1090–1099 (2011). [CrossRef]
  30. G. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012). [CrossRef]
  31. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A.109(23), 8834–8838 (2012). [CrossRef] [PubMed]
  32. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012). [CrossRef]
  33. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013). [CrossRef] [PubMed]
  34. J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett.61(11), 1290–1292 (1992). [CrossRef]
  35. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010). [CrossRef] [PubMed]
  36. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J.4(3), 735–740 (2012). [CrossRef]
  37. V. Babicheva and A. Lavrinenko, “Plasmonic modulator optimized by patterning of active layer and tuning permittivity,” Opt. Commun.285(24), 5500–5507 (2012). [CrossRef]
  38. A. Kerber and E. A. Cartier, “Reliability challenges for CMOS technology qualifications with Hafnium Oxide/Titanium Nitride gate stacks,” IEEE Trans. Device Mater. Reliab.9(2), 147–162 (2009). [CrossRef]
  39. R. Chau, M. Doczy, B. Doyle, and J. Kavalieros, “Metal-gate electrode for CMOS transistor applications,” US Patent 6 696 345, Feb. 24 (2004).
  40. J. K. Brask, T. E. Glassman, M. L. Doczy, and M. V. Metz, “Method for making a semiconductor device having a high-k gate dielectric,” US Patent 6 716 707, Sept. 30 (2004).
  41. A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. M. Fedeli, B. de Salvo, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012). [CrossRef]
  42. B. Little, “A VLSI photonics platform,” in Optical Fiber Communication Conference, (Optical Society of America, 2003), paper ThD1.
  43. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008). [CrossRef]
  44. M.-S. Kwon, J.-S. Shin, S.-Y. Shin, and W.-G. Lee, “Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express20(20), 21875–21887 (2012). [CrossRef] [PubMed]
  45. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010). [CrossRef] [PubMed]
  46. A. Emboras, A. Najar, S. Nambiar, P. Grosse, E. Augendre, C. Leroux, B. de Salvo, and R. E. de Lamaestre, “MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices,” Opt. Express20(13), 13612–13621 (2012). [CrossRef] [PubMed]
  47. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011). [CrossRef]
  48. S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express20, 1896–1898 (2012). [PubMed]
  49. R. Geffken and S. Luce, “Method of forming a self-aligned copper diffusion barrier in vias,” US Patent 5 985 762, Nov. 16 (1999).
  50. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol.16(4), 615–619 (1998). [CrossRef]
  51. T. Fujiwara, A. Watanabe, and H. Mori, “Measurement of uniformity of driving voltage in Ti:LiNbO3 waveguides using Mach-Zehnder interferometers,” IEEE Photon. Technol. Lett.2(4), 260–261 (1990). [CrossRef]
  52. J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron.19, 4601907 (2012).
  53. M. Bass, C. DeCusatis, G. Li, V. N. Mahajan, and E. V. Stryland, Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw Hill, 1994).
  54. Sopra data sheet, http://www.sspectra.com/sopra.html .
  55. D. C. Look, T. C. Droubay, and S. A. Chambers, “Stable highly conductive ZnO via reduction of Zn vacancies,” Appl. Phys. Lett.101(10), 102101 (2012). [CrossRef]
  56. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett.99(2), 021101 (2011). [CrossRef]
  57. H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett.102(17), 171103 (2013). [CrossRef]
  58. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001). [CrossRef]
  59. S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis & Designs (McGraw Hill, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited