OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27344–27355

Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects

Søren Raza, Wei Yan, Nicolas Stenger, Martijn Wubs, and N. Asger Mortensen  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27344-27355 (2013)
http://dx.doi.org/10.1364/OE.21.027344


View Full Text Article

Enhanced HTML    Acrobat PDF (1789 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate on the SP resonance energy to the approach of an effective homogeneous background permittivity. We derive the nonlocal polarizability of a small metal sphere embedded in a homogeneous dielectric environment, leading to the nonlocal generalization of the classical Clausius–Mossotti factor. We also present an exact formalism based on multipole expansions and scattering matrices to determine the optical response of a metal sphere on a dielectric substrate of finite thickness, taking into account retardation and nonlocal effects. We find that the substrate-based calculations show a similar-sized blueshift as calculations based on a sphere in a homogeneous environment, and that they both agree qualitatively with the EELS measurements.

© 2013 OSA

OCIS Codes
(000.1600) General : Classical and quantum physics
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: July 26, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 20, 2013
Published: November 4, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics
Surface Plasmon Photonics (2013) Optics Express

Citation
Søren Raza, Wei Yan, Nicolas Stenger, Martijn Wubs, and N. Asger Mortensen, "Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects," Opt. Express 21, 27344-27355 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer, N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and N. A. Mortensen, “Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS,” Nanophotonics2, 131–138 (2013). [CrossRef]
  2. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330, 377–445 (1908). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  4. N. D. Lang and W. Kohn, “Theory of metal surfaces: Charge density and surface energy,” Phys. Rev. B1, 4555–4568 (1970). [CrossRef]
  5. A. Boardman, B. Paranjape, and R. Teshima, “The effect of structure on surface plasmons,” Surf. Sci.49, 275–292 (1975). [CrossRef]
  6. A. J. Bennett, “Influence of the electron charge distribution on surface-plasmon dispersion,” Phys. Rev. B1, 203–207 (1970). [CrossRef]
  7. P. Apell, “A simple derivation of the surface contribution to the reflectivity of a metal, and its use in the Van der Waals interaction,” Phys. Scr.24, 795–806 (1981). [CrossRef]
  8. P. J. Feibelman, “Surface electromagnetic fields,” Prog. Surf. Sci.12, 287–407 (1982). [CrossRef]
  9. R. Ruppin, “Optical properties of a plasma sphere,” Phys. Rev. Lett.31, 1434–1437 (1973). [CrossRef]
  10. A. D. Boardman and B. V. Paranjape, “The optical surface modes of metal spheres,” J. Phys. F: Met. Phys.7, 1935–1945 (1977). [CrossRef]
  11. P. Apell and Å. Ljungbert, “A general non-local theory for the electromagnetic response of a small metal particle,” Phys. Scr.26, 113–118 (1982). [CrossRef]
  12. C. Schwartz and W. L. Schaich, “Hydrodynamic models of surface plasmons,” Phys. Rev. B26, 7008–7011 (1982). [CrossRef]
  13. A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal, S. A. Maier, and J. B. Pendry, “Transformation-optics description of nonlocal effects in plasmonic nanostructures,” Phys. Rev. Lett.108, 106802 (2012). [CrossRef] [PubMed]
  14. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C115, 19470–19475 (2012). [CrossRef]
  15. G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction in plasmonic nanowire dimers due to nonlocal response,” Opt. Express20, 4176–4188 (2012). [CrossRef] [PubMed]
  16. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012). [CrossRef] [PubMed]
  17. U. Kreibig and C. Fragstein, “The limitation of electron mean free path in small silver particles,” Z. Physik224, 307–323 (1969). [CrossRef]
  18. L. Genzel, T. P. Martin, and U. Kreibig, “Dielectric function and plasma resonance of small metal particles,” Z. Phys. B21, 339–346 (1975). [CrossRef]
  19. P. Apell and D. R. Penn, “Optical properties of small metal spheres: Surface effects,” Phys. Rev. Lett.50, 1316–1319 (1983). [CrossRef]
  20. O. Keller, M. Xiao, and S. Bozhevolnyi, “Optical diamagnetic polarizability of a mesoscopic metallic sphere: transverse self-field approach,” Opt. Comm.102, 238–244 (1993). [CrossRef]
  21. U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci.156, 678–700 (1985). [CrossRef]
  22. K.-P. Charlé, W. Schulze, and B. Winter, “The size dependent shift of the surface-plasmon absorption-band of small spherical metal particles,” Z. Phys. D12, 471–475 (1989). [CrossRef]
  23. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B48, 18178–18188 (1993). [CrossRef]
  24. J. Tiggesbäumker, L. Köller, K.-H. Meiwes-Broer, and A. Liebsch, “Blue shift of the Mie plasma frequency in Ag clusters and particles,” Phys. Rev. A48, R1749–R1752 (1993). [CrossRef] [PubMed]
  25. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett.5, 515–518 (2005). [CrossRef] [PubMed]
  26. F. Ouyang, P. Batson, and M. Isaacson, “Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy,” Phys. Rev. B46, 15421–15425 (1992). [CrossRef]
  27. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature483, 421–427 (2012). [CrossRef] [PubMed]
  28. A. Boardman, Electromagnetic Surface Modes. Hydrodynamic theory of plasmon-polaritons on plane surfaces. (John Wiley and Sons, Chichester, 1982).
  29. P. Apell, “The electromagnetic field near a metal surface in the semi-classical infinite barrier model,” Phys. Scr.17, 535–542 (1978). [CrossRef]
  30. L. Mulfinger, S. D. Solomon, M. Bahadory, A. Jeyarajasingam, S. A. Rutkowsky, and C. Boritz, “Synthesis and study of silver nanoparticles,” J. Chem. Educ.84, 322–325 (2007). [CrossRef]
  31. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82, 209–275 (2010). [CrossRef]
  32. J. Aizpurua, A. Rivacoba, and S. P. Apell, “Electron-energy losses in hemispherical targets,” Phys. Rev. B54, 2901–2909 (1996). [CrossRef]
  33. A. Boardman and R. Ruppin, “The boundary conditions between spatially dispersive media,” Surf. Sci.112, 153–167 (1981). [CrossRef]
  34. D. J. Griffiths, Introduction to Electrodynamics (Benjamin Cummings), 3rd ed.
  35. F. Bloch, “Bremsvermögen von Atomen mit mehreren Elektronen,” Z. Phys. A81, 363–376 (1933).
  36. S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Unusual resonances in nanoplasmonic structures due to nonlocal response,” Phys. Rev. B84, 121412(R) (2011). [CrossRef]
  37. G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen, “Nonlocal response in plasmonic waveguiding with extreme light confinement,” Nanophotonics2, 161–166 (2013). [CrossRef]
  38. F. Sauter, “Der Einfiuß von Plasmawellen auf das Reflexionsvermögen von Metallen (I),” Z. Physik203, 488–494 (1967). [CrossRef]
  39. F. Forstmann and H. Stenschke, “Electrodynamics at metal boundaries with inclusion of plasma waves,” Phys. Rev. Lett.38, 1365–1368 (1977). [CrossRef]
  40. G. Barton, “Some surface effects in the hydrodynamic model of metals,” Rep. Prog. Phys.42, 963–1016 (1979). [CrossRef]
  41. J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1998).
  42. I. Villo-Perez, Z. Mišković, and N. Arista, “Plasmon spectra of nano-structures: A hydrodynamic model,” in “Trends in Nanophysics,” V. Bârsan and A. Aldea, eds. (SpringerBerlin Heidelberg, 2010), Engineering Materials, pp. 217–254. [CrossRef]
  43. Y. Luo, A. I. Fernández-Domínguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlocality: A simple model,” Phys. Rev. Lett.111, 093901 (2013). [CrossRef] [PubMed]
  44. I. Lindau and P. O. Nilsson, “Experimental evidence for excitation of longitudinal plasmons by photons,” Phys. Lett. A31, 352–353 (1970). [CrossRef]
  45. K.-P. Charlé, L. König, S. Nepijko, I. Rabin, and W. Schulze, “The surface plasmon resonance of free and embedded Ag-clusters in the size range 1,5 nm < D < 30 nm,” Cryst. Res. Technol.33, 1085–1096 (1998). [CrossRef]
  46. W. Yan and , in preparation (2013).
  47. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  48. C. David, N. A. Mortensen, and J. Christensen, “Perfect imaging, epsilon-near zero phenomena and waveguiding in the scope of nonlocal effects,” Sci. Rep.3, 2526 (2013). [CrossRef] [PubMed]
  49. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt.21, 1069–1072 (1982). [CrossRef] [PubMed]
  50. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices.” Appl. Opt.37, 5271–5283 (1998). [CrossRef]
  51. R. Ruppin, “Surface modes and optical absorption of a small sphere above a substrate,” Surf. Sci.127, 108–118 (1983). [CrossRef]
  52. A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,” Phys. Rev. B48, 11317–11328 (1993). [CrossRef]
  53. R. Carmina Monreal, T. J. Antosiewicz, and S. P. Apell, “Competition between surface screening and size quantization for surface plasmons in nanoparticles,” New J. Phys.15, 083044 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited