OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27383–27391

Highly efficient broadband ultrafast plasmonics

Brian Ashall, José Francisco López-Barberá, Éadaoin McClean-Ilten, and Dominic Zerulla.  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27383-27391 (2013)
http://dx.doi.org/10.1364/OE.21.027383


View Full Text Article

Enhanced HTML    Acrobat PDF (7789 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To date, considerable experimental and theoretical focus has been placed on the spatial control of Surface Plasmon Polaritons (SPPs) using nanostructured surfaces; however, research aimed toward accessing the ultrafast dynamics of SPPs remains vastly unexplored. Despite this, SPPs have the potential to exhibit some of the fastest possible optical processes, while maintaining the advantage of nanoscale spatial manipulation. Here, we present an experimental and computational investigation of a system that provides access to the efficient excitation of broadband, propagating SPP modes. To achieve this, a surface array of tailor designed, reduced symmetry nanostructures has been fabricated to enable the required control of the plasmon dispersion map to match sub 20 fs pulses in the near infra-red. Using a combination of optical spectroscopy and frequency resolved optical gating techniques, complimented by finite element computational analysis, the efficient excitation of propagating broadband plasmonic modes is demonstrated.

© 2013 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Plasmonics

History
Original Manuscript: August 2, 2013
Revised Manuscript: September 29, 2013
Manuscript Accepted: September 30, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Citation
Brian Ashall, José Francisco López-Barberá, Éadaoin McClean-Ilten, and Dominic Zerulla., "Highly efficient broadband ultrafast plasmonics," Opt. Express 21, 27383-27391 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27383


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010). [CrossRef]
  3. M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic field microscope,” Nat. Photon.1, 539–544 (2007). [CrossRef]
  4. M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” N. J. Phys.10, 025031 (2008). [CrossRef]
  5. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402–077405 (2002). [CrossRef] [PubMed]
  6. B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation,” Phys. Rev. Lett.83, 4421–4424 (1999). [CrossRef]
  7. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface-enhanced raman scattering,” Phys. Rev. Lett.48, 957–960 (1982). [CrossRef]
  8. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldman, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998). [CrossRef]
  9. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999). [CrossRef]
  10. A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, “Delay in light transmission through small apertures,” Opt. Lett.26, 450–452 (2001). [CrossRef]
  11. R. Müller, V. Malyarchuk, and C. Lienau, “Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes,” Phys. Rev. B68, 205415–205423 (2003). [CrossRef]
  12. T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett.93, 243901–243904 (2004). [CrossRef]
  13. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901–143904 (2003). [CrossRef] [PubMed]
  14. C. Ropers, Müller, C. Lienau, G. Stibenz, G. Steinmeyer, D-J. Park, Y-C. Yoon, and D-S. Kim, “Ultrafast dynamics of light transmission through plasmonic crystals,” International Conference on Ultrafast Phenomena, Niigata, Japan (2004).
  15. R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett.95, 177401–177404 (2005). [CrossRef] [PubMed]
  16. W. Zhou, H. Gao, and T. W. Odom, “Toward broadband plasmonics: tuning dispersion in rhombic plasmonic crystals,” ACS Nano4, 1241–1247 (2010). [CrossRef] [PubMed]
  17. J.-S Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Scientific Reports2, 829 (2012). [CrossRef] [PubMed]
  18. S. Rehwald, M. Berndt, F. Katzenberg, S. Schwieger, E. Runge, K. Schierbaum, and D. Zerulla, “Tunable nanowires: an additional degree of freedom in plasmonics,” Phys. Rev. B76, 085420–085423 (2007). [CrossRef]
  19. S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett.93, 101103–101105 (2008). [CrossRef]
  20. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Pulses (Kluwer Academic Publishers, 2000). [CrossRef]
  21. J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric singl-slit,” Opt. Express19, 26463–26469 (2011). [CrossRef]
  22. B. Ashall, M. Berndt, and D. Zerulla, “Tailoring surface plasmon polariton propagation via specific symmetry properties of nanostructures,” Appl. Phys. Lett.91, 203109 (2007). [CrossRef]
  23. B. Ashall, B. Vohnsen, M. Berndt, and D. Zerulla, “Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures,” Phys. Rev. B80, 245413–245417 (2009). [CrossRef]
  24. A. Marini, D. V. Skryabin, and B. Malomed, “Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss,” Opt. Express19, 6616–6622 (2011). [CrossRef] [PubMed]
  25. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A8, S87 (2006). [CrossRef]
  26. P. Scholz, S. Schwieger, B. Ashall, D. Zerulla, and E. Runge, “The influence of wire shape on surface plasmon mode distribution,” Appl. Phys. B93, 111–115 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (605 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited