OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27392–27401

Measurement of surface plasmon autocorrelation functions

Christoph Lemke, Till Leißner, Alwin Klick, Jörn W. Radke, Jacek Fiutowski, Jakob Kjelstrup-Hansen, Horst-Günter Rubahn, and Michael Bauer  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 27392-27401 (2013)
http://dx.doi.org/10.1364/OE.21.027392


View Full Text Article

Enhanced HTML    Acrobat PDF (2564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we demonstrate the realization of an autocorrelator for the characterization of ultrashort surface plasmon polariton (SPP) pulses. A wedge shaped structure is used to continuously increase the time delay between two interfering SPPs. The autocorrelation signal is monitored by non-linear two-photon photoemission electron microscopy. The presented approach is applicable to other SPP sensitive detection schemes that provide only moderate spatial resolution and may therefore be of general interest in the field of ultrafast plasmonics.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(320.7080) Ultrafast optics : Ultrafast devices
(320.7100) Ultrafast optics : Ultrafast measurements
(250.5403) Optoelectronics : Plasmonics
(240.6675) Optics at surfaces : Surface photoemission and photoelectron spectroscopy

ToC Category:
Plasmonics

History
Original Manuscript: July 31, 2013
Revised Manuscript: September 18, 2013
Manuscript Accepted: September 19, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Citation
Christoph Lemke, Till Leißner, Alwin Klick, Jörn W. Radke, Jacek Fiutowski, Jakob Kjelstrup-Hansen, Horst-Günter Rubahn, and Michael Bauer, "Measurement of surface plasmon autocorrelation functions," Opt. Express 21, 27392-27401 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-27392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  2. K. F. Macdonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009). [CrossRef]
  3. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6, 737–748 (2012). [CrossRef]
  4. V. V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Photonics6, 728–736 (2012). [CrossRef]
  5. N. Rotenberg, M. Spasenović, T. L. Krijger, B. le Feber, F. J. García de Abajo, and L. Kuipers, “Plasmon scattering from single subwavelength holes,” Phys. Rev. Lett.108, 127402 (2012). [CrossRef] [PubMed]
  6. M. Sandtke, R. J. P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J. P. Korterik, F. B. Segerink, and L. Kuipers, “Novel instrument for surface plasmon polariton tracking in space and time.” Rev. Sci. Instrum.79, 013704 (2008). [CrossRef] [PubMed]
  7. T. Hattori, A. Kubo, K. Oguri, H. Nakano, and H. T. Miyazaki, “Femtosecond laser-excited two-photon fluorescence microscopy of surface plasmon polariton,” Jpn. J. Appl. Phys.51, 04DG03 (2012). [CrossRef]
  8. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons.” Science (New York, N.Y.)306, 1002–1005 (2004). [CrossRef]
  9. A. Kubo, N. Pontius, and H. Petek, “Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface,” Nano Lett.7, 470–475 (2007). [CrossRef] [PubMed]
  10. C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of spp pulse propagation in two-dimensional plasmonic focusing devices.” Nano Lett.13, 1053–1058 (2013). [CrossRef] [PubMed]
  11. F.-J. Meyer zu Heringdorf, L. Chelaru, S. Möllenbeck, D. Thien, and M. Horn-von Hoegen, “Femtosecond photoemission microscopy,” Surf. Sci.601, 4700–4705 (2007). [CrossRef]
  12. C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, and T. Brixner, “Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry.” Nano Lett.12, 45–9 (2012). [CrossRef]
  13. N. V. Kuzmin, P. F. Alkemade, G. W. ’t Hooft, and E. R. Eliel, “Bouncing surface plasmons.” Opt. Express15, 13757–13767 (2007). [CrossRef] [PubMed]
  14. C. Rulliere, ed., Femtosecond Laser Pulses: Principles and Experiments, 2nd ed. (Springer, 2004).
  15. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton machzehnder interferometer and oscillation fringes,” Plasmonics1, 141–145 (2006). [CrossRef]
  16. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006). [CrossRef] [PubMed]
  17. A. Brun, P. Georges, G. L. Saux, and F. Salin, “Single-shot characterization of ultrashort light pulses,” J. Phys. D: Appl. Phys.24, 1225–1233 (1991). [CrossRef]
  18. V. V. Temnov, K. Nelson, G. Armelles, A. Cebollada, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Femtosecond surface plasmon interferometry.” Opt. Express17, 8423–8432 (2009). [CrossRef] [PubMed]
  19. W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C. M. Schneider, R. Fromter, H. Oepen, and J. Kirschner, “Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity,” J. Electron Spectrosc. Relat. Phenom.84, 171–188 (1997). [CrossRef]
  20. O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, and M. Aeschlimann, “Time-resolved two photon photoemission electron microscopy,” Appl. Phys. B.74, 223–227 (2002). [CrossRef]
  21. M. Cinchetti, A. Gloskovskii, S. Nepjiko, G. Schönhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett.95, 47601 (2005). [CrossRef]
  22. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film.” Nano Lett.5, 1123–1127 (2005). [CrossRef] [PubMed]
  23. L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.-M. Adam, and P. Royer, “Short range plasmon resonators probed by photoemission electron microscopy,” Nano Lett.8, 935–940 (2008). [CrossRef] [PubMed]
  24. R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Direct imaging of optical diffraction in photoemission electron microscopy,” Appl. Phys. Lett.103, 021118 (2013). [CrossRef]
  25. C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express20, 12877 (2012). [CrossRef] [PubMed]
  26. T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, and H.-G. Rubahn, “Surface plasmon polariton emission prompted by organic nanofibers on thin gold films,” Plasmonics7, 253–260 (2012). [CrossRef]
  27. R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.-H. Oh, G. Boreman, and M. Raschke, “Optical dielectric function of gold,” Phys. Rev. B86, 235147 (2012). [CrossRef]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  29. N. Buckanie, P. Kirschbaum, S. Sindermann, and F. Meyer zu Heringdorf, “Interaction of light and surface plasmon polaritons in ag islands studied by nonlinear photoemission microscopy,” Ultramicroscopy130, 1–6 (2013). [CrossRef]
  30. T. Leißner, C. Lemke, J. Fiutowski, J. W. Radke, A. Klick, L. Tavares, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Morphological tuning of the plasmon dispersion relation in dielectric-loaded nanofiber waveguides,” Phys. Rev. Lett.111, 46802 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: PDF (109 KB)     
» Media 2: PDF (109 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited