OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 27402–27410

Mutual mode control of short- and long-range surface plasmons

Junichi Takahara and Masashi Miyata  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 27402-27410 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A symmetric metal slab waveguide simultaneously supports two opposite types of propagation mode similar to a metal film: short-range surface plasmon (SRSP) like mode and long-range surface plasmon (LRSP) like mode. The strong field confinement of SRSP-like mode plays a crucial role for nano-optical integrated circuits in spite of short propagation length. In order to avoid the trade-off between field confinement and propagation length, we demonstrate selective mode excitation and mutual mode conversion for nanofocusing mediated by LRSP-like mode.

© 2013 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: July 31, 2013
Revised Manuscript: September 27, 2013
Manuscript Accepted: September 29, 2013
Published: November 4, 2013

Virtual Issues
Surface Plasmon Photonics (2013) Optics Express

Junichi Takahara and Masashi Miyata, "Mutual mode control of short- and long-range surface plasmons," Opt. Express 21, 27402-27410 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997). [CrossRef] [PubMed]
  2. J. Takahara and T. Kobayash, “Low-dimensional optical waves and nano-optical circuits,” Optics & Photonics News15(10), 54–59 (2004). [CrossRef]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  4. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing, 2009).
  5. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86(21), 211101 (2005). [CrossRef]
  6. J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron.E90–C(1), 87–94 (2007). [CrossRef]
  7. M. Fukui, V. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi91(1), 61–64 (1979). [CrossRef]
  8. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47(26), 1927–1930 (1981). [CrossRef]
  9. P. Berini, “Long-range surface plasmon polaritons,” Adv. in Opt. and Photon.1(3), 484–588 (2009). [CrossRef]
  10. K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc. 1182–EE13–05, 55 (2009).
  11. M. Miyata and J. Takahara, “Excitation control of long-range surface plasmons by two incident beams,” Opt. Express20(9), 9493–9500 (2012). [CrossRef] [PubMed]
  12. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett.30(12), 1473–1475 (2005). [CrossRef] [PubMed]
  13. P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics6(1), 16–24 (2011). [CrossRef]
  14. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010). [CrossRef] [PubMed]
  15. M. Miyata and J. Takahara, “Colloidal quantum dot-based plasmon emitters with planar integration and long-range guiding,” Opt. Express21(7), 7882–7890 (2013). [CrossRef] [PubMed]
  16. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett.24(15), 1011–1013 (1999). [CrossRef] [PubMed]
  17. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express7(10), 329–335 (2000). [CrossRef] [PubMed]
  18. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  19. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett.25(11), 844–846 (2000). [CrossRef] [PubMed]
  20. J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001). [CrossRef]
  21. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102(20), 203904 (2009). [CrossRef] [PubMed]
  22. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000). [CrossRef]
  23. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  24. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007). [CrossRef] [PubMed]
  25. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010). [CrossRef] [PubMed]
  26. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007). [CrossRef] [PubMed]
  27. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009). [CrossRef] [PubMed]
  28. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007). [CrossRef] [PubMed]
  29. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16(1), 45–57 (2008). [CrossRef] [PubMed]
  30. A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited